245 resultados para Heat pumps
Resumo:
The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol–1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.
Resumo:
Heat transfer in a MHD flow between two infinite eccentric disks rotating with different speeds is considered when the plates are maintained at different temperatures. The results for the corresponding nonmagnetic case presented wrongly by Banerjee and Borkakati [7] are corrected. It is observed that the eccentric rotation reduces the heat transfer on the disks.
Resumo:
The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.
Resumo:
In this paper the numerical solution of the heat transfer problem in a convergent channel with uniform and non-uniform wall temperatures under boundary-layer approximations has been presented. Also, a semi-analytical solution for uniform wall temperature has been obtained.
Resumo:
An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.
Resumo:
The magnetofluid dynamic steady incompressible laminar boundary layer flow for a point sink with an applied magnetic field and mass transfer has been studied. The two-point boundary-value problem governed by self-similar equations has been solved numerically. It is observed that the magnetic field increases the skin friction, but reduces the heat transfer and mass flux diffusion. However, the skin friction, heat transfer and mass flux diffusion increase due to suction and the effect of injection is just opposite. Prandtl and Schmidt numbers affect the temperature and concentration, respectively.
Resumo:
Based on the theory given by Saltzman and Ashe (1976), sensible heat fluxes are calculated for the active and break phases of the southwest monsoon over the Indian region. The conclusion drawn is that the sensible heat flux is generally larger during the break monsoon situation when compared with that for the active monsoon situation. The synoptic heat flux is negligible when compared with mean and diurnal heat fluxes over the Indian region even during the monsoon season.
Resumo:
A comprehensive model is developed for previous termheat transfernext term during previous termdropwise condensationnext term based on the assumption that previous termheat transfernext term takes place through the bare surface in between drops to form nuclei at nucleation sites during the waiting period required for nucleation. The dynamics of drop formation and surface renewal, and the presence of non-condensable gases in the vapour have been considered. The resulting equation expresses the dependence of the vapour-side previous termheat transfernext term coefficient on the previous termheatnext term flux, properties of the vapour, previous termcondensationnext term coefficient, mole fraction of non-condensable gases in the vapour, free area available for previous termcondensation,next term surface roughness and surface thermal properties. The equation is tested with the available data and the agreement is found to be satisfactory.
Resumo:
Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.
Resumo:
In this paper we have studied the propagation of pressure shocks in viscous, heat-conducting, relativistic fluids. Velocities of wave fronts and growth equations for the strength of the waves are obtained in the case of low and high temperatures with variable transport coefficients. On the basis of numerical integrations the growth equation results have been discussed. In the case of constant transport coefficients and for all admissible values of ratio of specific heats of the fluid, an analytical solution for the velocity of the wave as a function of distance along the normal trajectory to the wave front, has been obtained.
Resumo:
The heat pipe is an innovative engineering structure characterized by its capacity to transfer large quantities of heat through relatively small cross-sectional areas with very small temperature differences; it also possesses high thermal conductance and low thermal impedance. In recent times, heat pipes in various forms and designs have found a wide variety of applications. This paper briefly presents the basic concepts of heat pipes, recent innovations in design and their applications.
Resumo:
MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) stimulated liver tryptophan pyrrolase 2-fold between 3 and 48 h. Plasma corticosterone increased 2-fold after 1 h of heat exposure and decreased to a low value of 50% by 16 h. The effect of heat exposure on the enzyme was obtained in adrenalectomized animals. Stimulation by cortisol and tryptophan of the enzyme was also obtained in heat exposure, and the effects seemed to be additive. The concentration of tryptophan in the liver remained unchanged, and that in the plasma decreased to about 50% at 8 h exposure to heat and reverted to normal by 46 h. Simultaneous administration of noradrenaline to heat-exposed rats had no effect, whereas that of thyroxine partly prevented the stimulation of the enzyme activity. Hypothyroid conditions obtained by thyroidectomy or treatment with propylthiouracil significantly stimulated the enzyme activity. Cycloheximide treatment of heat-exposed rats did not prevent the stimulation of the enzyme activity. The results indicate that the effect of heat exposure on liver tryptophan pyrrolase is obtained, due to the accompanying hypothyroid condition, by increasing the activity of the existing protein by a mechanism possibly different from those known at present.
Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.