19 resultados para Handling Facilities
Resumo:
There are many applications such as software for processing customer records in telecom, patient records in hospitals, email processing software accessing a single email in a mailbox etc. which require to access a single record in a database consisting of millions of records. A basic feature of these applications is that they need to access data sets which are very large but simple. Cloud computing provides computing requirements for these kinds of new generation of applications involving very large data sets which cannot possibly be handled efficiently using traditional computing infrastructure. In this paper, we describe storage services provided by three well-known cloud service providers and give a comparison of their features with a view to characterize storage requirements of very large data sets as examples and we hope that it would act as a catalyst for the design of storage services for very large data set requirements in future. We also give a brief overview of other kinds of storage that have come up in the recent past for cloud computing.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Body Area Network, a new wireless networking paradigm, promises to revolutionize the healthcare applications. A number of tiny sensor nodes are strategically placed in and around the human body to obtain physiological information. The sensor nodes are connected to a coordinator or a data collector to form a Body Area Network. The tiny devices may sense physiological parameters of emergency in nature (e.g. abnormality in heart bit rate, increase of glucose level above the threshold etc.) that needs immediate attention of a physician. Due to ultra low power requirement of wireless body area network, most of the time, the coordinator and devices are expected to be in the dormant mode, categorically when network is not operational. This leads to an open question, how to handle and meet the QoS requirement of emergency data when network is not operational? Emergency handling becomes more challenging at the MAC layer, if the channel access related information is unknown to the device with emergency message. The aforementioned scenarios are very likely scenarios in a MICS (Medical Implant Communication Service, 402-405 MHz) based healthcare systems. This paper proposes a mechanism for timely and reliable transfer of emergency data in a MICS based Body Area Network. We validate our protocol design with simulation in a C++ framework. Our simulation results show that more than 99 p ercentage of the time emergency messages are reached at the coordinator with a delay of 400ms.
Resumo:
There is a need to use probability distributions with power-law decaying tails to describe the large variations exhibited by some of the physical phenomena. The Weierstrass Random Walk (WRW) shows promise for modeling such phenomena. The theory of anomalous diffusion is now well established. It has found number of applications in Physics, Chemistry and Biology. However, its applications are limited in structural mechanics in general, and structural engineering in particular. The aim of this paper is to present some mathematical preliminaries related to WRW that would help in possible applications. In the limiting case, it represents a diffusion process whose evolution is governed by a fractional partial differential equation. Three applications of superdiffusion processes in mechanics, illustrating their effectiveness in handling large variations, are presented.