22 resultados para HLA-DR Antigens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods: Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-gamma production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results: We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-alpha and IFN-gamma) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions: PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma evansi is the most extensively distributed trypanosome responsible for disease called surra in livestock in many countries including frequent outbreaks in India. The prevalence of this disease is most commonly reported by standard parasitological detection methods (SPDM); however, antibody ELISA is being in practice by locally produced whole cell lysate (WCL) antigens in many countries. In the present investigation, we attempted to identify and purify immuno dominant, infection specific trypanosome antigens from T. evansi proteome using experimentally infected equine serum by immuno blot. Three immuno dominant clusters of proteins i.e. 62-66 kDa, 52-55 kDa and 41-43 kDa were identified based on their consistent reactivity with donkey sequential serum experimentally infected T. evansi up to 280 days post infection (dpi). The protein cluster of 62-66 kDa was purified in bulk in native form and comparatively evaluated with whole cell lysate antigen (WCL). ELISA and immuno blot showed that polypeptide of this cluster is 100% sensitive in detection of early and chronic infection. Further, this protein cluster was also found immuno reactive against hyper immune serum raised against predominantly 66 kDa exo antigen, revealed that this is a common immunodominant moieties in proteome and secretome of T. evansi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NF kappa B and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NF kappa B dependent since it was blocked by inhibitors of NF kappa B activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NF kappa B inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-alpha was also inhibited by ShRNA mediated knockdown of NF kappa B. TNF-alpha treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NF kappa B-mediated induction of HLA-F following JEV infection and TNF-alpha exposure is being suggested for the first time. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Productive infection of human endothelial cells with Japanese encephalitis virus (JEV), a single stranded RNA virus induces shedding of sHLA-E. We show here that sHLA-E that is released upon infection with this flavivirus can inhibit IL-2 and PMA mediated ERK 1/2 phosphorylation in two NK cell lines, Nishi and NKL. Virus infected or IFN-gamma treated cell culture supernatants containing sHLA-E were found to partially inhibit IL-2 mediated induction of CD25 molecules on NKL cells. It was also found that sHLA-E could inhibit IL-2 induced H-3]-thymidine incorporation suggesting that, similar to cell surface expressed HLA-E, sHLA-E could also inhibit NK cell responses. Hence JEV-induced shedding of sHLA-E needs further investigation to better understand immune responses in JEV infections since it may have a role in viral evasion of NK cell responses. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphatic filariasis is a parasitic disease of tropical countries. This is a disfiguring and painful disease contracted in childhood, but the symptoms become apparent only in later years. Diagnosis of filarial infection is very crucial for the management of the disease. The main objective of this study was to develop a filarial antigen-based immunological assay for the diagnosis and surveillance of the disease. Monoclonal and polyclonal antibodies were raised to the recombinant protein Brugia malayi vespid allergen homologue (VAH). Capture enzyme-linked immunosorbent assay (ELISA) was standardized utilizing various combinations of antibodies and evaluated with serum samples of endemic normal (EN, n = 110), microfilaraemic (MF, n = 65), chronic pathology (CP, n = 45) and non-endemic normal (NEN, n = 10) individuals. Of the 230 samples tested, VAHcapture assay detected circulating antigen in 97.91% of bancroftian and 100% of brugian microfilaraemic individuals, and 5% of endemic normal individuals, comparable to the earlier reported SXP-1 antigen detection assay. However, the combination of VAH and SXP-1 (VS) capture ELISA was found to be more robust, detecting 100% of microfilaraemic individuals and with higher binding values. Thus an antigen capture immunoassay has been developed, which can differentiate active infection from chronic infection by detecting circulating filarial antigens in clinical groups of endemic areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A safe, effective, and inexpensive vaccine against typhoid and other Salmonella diseases is urgently needed. In order to address this need, we are developing a novel vaccine platform employing buoyant, self-adjuvanting gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1, bioengineered to display highly conserved Salmonella enterica antigens. As the initial antigen for testing, we selected SopB, a secreted inosine phosphate effector protein injected by pathogenic S. enterica bacteria during infection into the host cells. Two highly conserved sopB gene segments near the 3'- region, named sopB4 and sopB5, were each fused to the grIpC gene, and resulting SopB-GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and SopB5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of SopB-GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ApmrG-H111-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-y, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Thl response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were also found to be stable at elevated temperatures for extended periods without refrigeration. The results show that bioengineered GVNPs are likely to represent a valuable platform for antigen delivery and development of improved vaccines against Salmonella and other diseases.