95 resultados para Ground granulated blast-furnace slag
Resumo:
The efficiency of dephosphorisation is governed by the thermodynamic behaviour of phosphorus and oxygen in molten metal, and P2O5 and FeO in slag. The equilibrium distribution of phosphorus and oxygen, for a wide range of chemical compositions simulating the evolution of slag composition during a typical BOF blow, has been experimentally determined. A mathematical model for estimation of the activity coefficients, as a function of the chemical composition, was also attempted.
Resumo:
In this work an attempt has been made to evaluate the seismic hazard of South India (8.0 degrees N-20 degrees N; 72 degrees E-88 degrees E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing theseismic hazard, the study area was divided into small grids of size 0.1 degrees x0.1 degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.
Resumo:
It is shown that a leaky aquifer model can be used for well field analysis in hard rock areas, treating the upper weathered and clayey layers as a composite unconfined aquitard overlying a deeper fractured aquifer. Two long-duration pump test studies are reported in granitic and schist regions in the Vedavati river basin. The validity of simplifications in the analytical solution is verified by finite difference computations.
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
Literature reveals that a low order priority has been given to foundry applications of the solar furnace for temperatures upto about 1000°C. In the present work, the performance of a solar furnace capable of melting small quantities of foundry-grade metals and alloys had been studied under various conditions. Crucibles of different materials and shapes were tried and the effect of having different heat-shield materials was also studied. Al---bronze crucible with cavity, and well-polished stainless stell heat-shield were found to be most effective in enhancing the efficiency of the furnace. Many important industrial applications of the present solar furnace, such as the recovery of metallic zinc from slags, had also been realised.
Resumo:
Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.
Resumo:
In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock - the expansion region, the nearly uniform region outside the main expansion and the region between the contact surface and the main shock, have been generated and matched across the boundaries. We then study the convergence of the solution by using Pade approximation. It constitutes a genuine analytic solution for a moderately strong explosion, which, however, does not involve a secondary shock. The pressure distribution behind the shock however shows some significant changes in the location of the tail of the rarefaction and the interface, in comparison to the planar problem. The theory developed for the spherical blasts is also extended to cylindrical blasts. The results are compared with the numerical solution.
Resumo:
Filters and other devices using photonic bandgap (PBG) theory are typically implemented in microstrip lines by etching periodic holes on the ground plane of the microstrip. The period of such several holes corresponds to nearly half the guided wavelength of the transmission line. In this paper we study the effects of miniaturization of the PBG device by meandering the microstrip line about one single hole in the ground plane. A comparison of the S-parameters and dispersion behavior of the modified geometry and a conventional PBG device with a straight microstrip line shows that these devices have similar behaviors.
Resumo:
CaO-SiO2-FeOx-P2O5-MgO bearing slags are typical in the basic oxygen steelmaking (BOS) process. The partition ratio of phosphorus between slag and steel is an index of the phosphorus holding capacity of the slag, which determines the phosphorus content achievable in the finished steel. The influences of FeO concentration and basicity on the equilibrium phosphorus partition ratios were experimentally determined at temperatures of 1873 and 1923 K, for conditions of MgO saturation. The partition ratio initially increased with basicity but attained a constant value beyond basicity of 2.5. An increase in FeO concentration up to approximately 13 to 14 mass pet was beneficial for phosphorus partition.
Resumo:
Refining reactions in steelmaking primarily involve oxidation of impurity element(s). The oxidation potential of the slag and the activity of oxygen in the metal (h(O)) are the major factors controlling these chemical reactions. In turn, the oxidation potential of the slag is influenced strongly by the equilibrium distribution of oxygen between ferrous and ferric oxides. We recently investigated the activity coefficient of FeO in steelmaking slag and the effect of chemical composition thereon. This work is focused on estimation of theactivity coefficient of Fe2O3.
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.