39 resultados para Gronwall Helium wavefunction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors report the design and construction of a very simple vibrating reed apparatus with automatic frequency locking capability where the resonance frequency and the internal friction can be recorded continuously as a function of temperature. The apparatus is particularly suitable for studies down to liquid helium temperatures or below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low cost 12 T pulsed magnet system has been integrated with a closed-cycle helium refrigerator. The copper solenoid is directly immersed in liquid nitrogen for reduced electrical resistance and more efficient heat transfer. This ensures a minimal delay of few minutes between pulses. The sample is mounted on the cold finger of the refrigerator and, along with the surrounding vacuum shroud, is inserted into the bore of the solenoid. When combined with software lock-in signal processing to reduce noise, quick but accurate measurements can be performed at temperatures 4 K-300 K up to 12 T. Quantum Hall effect data in a p-channel SiGe/Si heterostructure has been used to calibrate the instrument against a commercial superconducting magnet. Its versatility as a routine characterization tool is demonstrated bymeasuring parallel conduction in Si/SiGe modulation doped heterostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model of mobile 0-holes hybrized with Cu-spins on a square lattice is examined. A variational groundstate wavefunction which interpolates smoothly between n.n. RVB and Néel limits gives a Néellike minimum. A hole in an AF lattice polarizes it locally and becomes quite mobile. Two n.n. holes attract. Finally we speculate how holes can stabilize a spin liquid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two stage Pulse Tube Cryocooler (PTC) is designed and fabricated which reaches a no-load temperature of 2.5K in the second stage and similar to 60 K in the first stage respectively. The system provides a cooling power of similar to 250 mW at 5K in the second stage. Stainless steel meshes (size 200) and lead (Pb) granules are used as the first stage regenerator materials and combination of Pb with Er3Ni / HoCu2 are used as the second stage regenerator materials. The system operates at 1.6 Hz using a 6 kW water cooled helium compressor. Studies conducted by varying the dimensions of Pulse Tubes and regenerators show that the dimensions of the Pulse Tubes are more critical to the performance of the Cryocooler than those of the regenerators. Experimental studies show that the optimum volume ratios of Er3Ni to Pb and HoCu2 to Pb in the second stage regenerator should be 3:2 and 2:3 respectively for the best performance. Further, systems with HoCu2 performed better than those with Er3Ni. The theoretical analysis of the system has been carried out using a simple isothermal model. The experimentally measured cooling powers are in good agreement with the theoretical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. We critically examine some recent claims that certain field theories with and without boson kinetic energy terms are equivalent. We point out that the crucial element in these claims is the finiteness or otherwise of the boson wavefunction renormalisation constant. We show that when this constant is finite, the equivalence proof offered in the literature fails in a direct way. When the constant is divergent, the claimed equivalence is only a consequence of improper use of divergent quantities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influence of various gases on the intensity of single bubble sonoluminescence has been studied. The gases used were air, oxygen, nitrogen, argon and helium. Among these oxygen gave the brightest intensity with nitrogen giving the least.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present insightful results on the kinetics of photodarkening (PD) in Ge(x)As(45-x)Se(55) glasses at the ambient and liquid helium temperatures when the network rigidity is increased by varying x from 0 to 16. We observe a many fold change in PD and its kinetics with decreasing network flexibility and temperature. Moreover, temporal evolution of PD shows a dramatic change with increasing x. (C)2011 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Writing the hindered rotor (hr) partition function as the trace of (rho) over cap = e(-beta(H) over cap hr), we approximate it by the sum of contributions from a set of points in position space. The contribution of the density matrix from each point is approximated by performing a local harmonic expansion around it. The highlight of this method is that it can be easily extended to multidimensional systems. Local harmonic expansion leads to a breakdown of the method a low temperatures. In order to calculate the partition function at low temperatures, we suggest a matrix multiplication procedure. The results obtained using these methods closely agree with the exact partition function at all temperature ranges. Our method bypasses the evaluation of eigenvalues and eigenfunctions and evaluates the density matrix for internal rotation directly. We also suggest a procedure to account for the antisymmetry of the total wavefunction in the same. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of adsorption characteristics of activated carbon (porous material) in the temperature range from 5 to 20 K is essential when used in cryosorption pumps for nuclear fusion applications. However, such experimental data are very scarce in the literature, especially below 77 K. So, an experimental system is designed and fabricated to measure the adsorption characteristics of porous materials under variable cryogenic temperatures (from 5 K to 100 K). This is based on the commercially available micropore-analyser coupled to a closed helium cycle two-stage Gifford McMahon (GM) Cryocooler, which allows the sample to be cooled to 4.2 K. The sample port is coupled to the Cryocooler through a heat switch, which isolates this port from the cold head of the Cryocooler. By this, the sample temperature can now be varied without affecting the Cryocooler. The setup enables adsorption studies in the pressure range from atmospheric down to 10(-4) Pa. The paper describes the details of the experimental setup and presents the results of adsorption studies at 77 K for activated carbon with nitrogen as adsorbate. The system integration is now completed to enable adsorption studies at 4.2 K.