199 resultados para Grid Generation
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
In this paper, we have probed the origin of SHG in copper nanoparticles by polarization-resolved hyper-Rayleigh scattering (HRS). Results obtained with various sizes of copper nanoparticles at four different wavelengths covering the wavelength range 738-1907 nm reveal that the origin of second harmonic generation (SHG) in these particles is purely dipolar in nature as long as the size (d) of the particles remains smaller compared to the wavelength (;.) of light ("small-particle limit"). However, contribution of the higher order multipoles coupled with retardation effect becomes apparent with an increase in the d/lambda ratio. We have identified the "small-particle limit" in the second harmonic generation from noble metal nanoparticles by evaluating the critical d/lambda ratio at which the retardation effect sets in the noble metal nanoparticles. We have found that the second-order nonlinear optical property of copper nanoparticles closely resembles that of gold, but not that of silver. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we have used the method of characteristics developed for two dimensional unsteady flow problems to study a simplified axial turbine problem. The system consists of two sets of blades —the guiding vanes which are fixed and the rotor blades which move perpendicular to these vanes. The initial undisturbed constant flow in the system is perturbed by introducing a small velocity normal to the rotor blades to simulate a slight constant inclination. The resulting perturbed flow is periodic after the first three cycles. We have studied the perturbed density distribution throughout the system during a period.
Resumo:
Knowledge of the generation of H202 in cellular oxidations has existed for many years. It has been assumed that H202 is tOxiC tO cells and the presence of catalase is indicative of a detoxication mechanism. Other radicals of oxygen were recently recognized to be more potent destructive agents of biological material than H202. Also catalase and other peroxidases utilize H202 in some cellular oxidation processes leading to several important metabolites. Thus, the generation of H202 in cellular processes seems to be purposeful and H202 can not be dismissed as a mere undesirable byproduct. Biological formation of H202 is not limited to the previously known flavoproteins and some copper enzymes, but other redox systems, particularly heme and non-heme iron proteins, are now found to undergo auto-oxidation yielding H202. The capacity for generation of H202 is now found to be widespread in a variety of organisms and in the organdies of the cells. The reduction of oxygen to H20 by mitochondrial cytochrome oxidase being the predominant oxygen-utilizing reaction had over-shadowed the importance of the quantitatively minor pathways. Under aerobic conditions generation of H202 by a Variety of biomembranes has now been found to be a physiological event interlinked with phenomena such as phagocytosis, transport processes and thermogenesis in some as yet unidentified way. The underlying mechanisms of these processes seem to involve generation and utilization of H202 in mitochondria, microsomes, peroxisomes or plasma membranes. This review gives an account of the potential of biomembranes to generate H202 and its implication in the cellular processes.
Resumo:
This paper describes an algorithm to compute the union, intersection and difference of two polygons using a scan-grid approach. Basically, in this method, the screen is divided into cells and the algorithm is applied to each cell in turn. The output from all the cells is integrated to yield a representation of the output polygon. In most cells, no computation is required and thus the algorithm is a fast one. The algorithm has been implemented for polygons but can be extended to polyhedra as well. The algorithm is shown to take O(N) time in the average case where N is the total number of edges of the two input polygons.
Resumo:
Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.
Resumo:
Acoustic surface waves can be generated along the plasma column in pressure equilibrium with a gas blanket in the presence of the uniform axial magnetic field. Unlike the case of volume-acoustic-wave generation in the magnetoplasma reported recently, the threshold magnetic field required for the generation of acoustic surface waves increases with increasing gas pressure.
Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria
Resumo:
Exposure of rats to heat (39 +/- 1 degree C) decreased H2O2 generation in mitochondria of the liver, but not of the kidney or the heart. The effect was obtained with three substrates, succinate, glycerol 1-phosphate and choline, with a decrease to 50% in the first 2-3 days of exposure, and a further decrease on longer exposure. The dehydrogenase activity with only glycerol 1-phosphate decreased, which is indicative of the hypothyroid condition, whereas choline dehydrogenase activity remained unchanged and that of succinate dehydrogenase decreased on long exposure. The serum concentration of thyroxine decreased in heat-exposed rats. Thyroxine treatment of rats increased H2O2 generation. Hypothyroid conditions obtained by treatment with propylthiouracil or thyroidectomy caused a decrease in H2O2 generation and changes in dehydrogenase activities similar to those with heat exposure. Treatment of heat-exposed or thyroidectomized rats with thyroxine stimulated H2O2 generation by a mechanism apparently involving fresh protein synthesis. The results indicate that H2O2 generation in mitochondria of heat-exposed animals is determined by thyroid status.
Resumo:
Identification of the optimum generation schedule by various methods of coordinating incremental generation costs and incremental transmission losses has been described previously in the literature. This paper presents an analytical approach which reduces the time-consuming iterative procedure into a mere positive-root determination of a third-order polynomial in λ. This approach includes the effect of transmission losses and is suitable for systems with any number of plants. The validity and effectiveness of this method are demonstrated by analysing a sample system.
Resumo:
Through the analysis of a set of numerical simulations of major mergers between initially non-rotating, pressure-supported progenitor galaxies with a range of central mass concentrations, we have shown that: (1) it is possible to generate elliptical-like galaxies, with outside one effective radius, as a result of the conversion of orbital- into internal-angular momentum; (2) the outer regions acquire part of the angular momentum first; (3) both the baryonic and the dark matter components of the remnant galaxy acquire part of the angular momentum, the relative fractions depending on the initial concentration of the merging galaxies. For this conversion to occur the initial baryonic component must be sufficiently dense and/or the encounter should take place on an orbit with high angular momentum. Systems with these hybrid properties have recently been observed through a combination of stellar absorption lines and planetary nebulae for kinematic studies of early-type galaxies. Our results are in qualitative agreement with these observations and demonstrate that even mergers composed of non rotating, pressure-supported progenitor galaxies can produce early-type galaxies with significant rotation at large radii.
Resumo:
Database schemes can be viewed as hypergraphs with individual relation schemes corresponding to the edges of a hypergraph. Under this setting, a new class of "acyclic" database schemes was recently introduced and was shown to have a claim to a number of desirable properties. However, unlike the case of ordinary undirected graphs, there are several unequivalent notions of acyclicity of hypergraphs. Of special interest among these are agr-, beta-, and gamma-, degrees of acyclicity, each characterizing an equivalence class of desirable properties for database schemes, represented as hypergraphs. In this paper, two complementary approaches to designing beta-acyclic database schemes have been presented. For the first part, a new notion called "independent cycle" is introduced. Based on this, a criterion for beta-acyclicity is developed and is shown equivalent to the existing definitions of beta-acyclicity. From this and the concept of the dual of a hypergraph, an efficient algorithm for testing beta-acyclicity is developed. As for the second part, a procedure is evolved for top-down generation of beta-acyclic schemes and its correctness is established. Finally, extensions and applications of ideas are described.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.