199 resultados para Green-Kubo Theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is maintained that the one-parameter scaling theory is inconsistent with the physics of Anderson localisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the large anomalous Hall constants of mixed-valence and Kondo-lattice systems can be understood in terms of a simple resonant-level Fermi-liquid model. Splitting of a narrow, orbitally unquenched, spin-orbit split, f resonance in a magnetic field leads to strong skew scattering of band electrons. We interpret both the anomalous signs and the strong temperature dependence of Hall mobilities in CeCu2Si2, SmB6, and CePd3 in terms of this theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of drop formation at conical tips under near zero flow conditions has been investigated using a theoretical approach. The analysis permits the prediction of drop profile and drop volume, until the onset of instability. A semiempirical approach based on the similarity of drop shapes has been adopted to predict the detaching drop volumes at conical tips. The effects of base diameter of the cone, cone angle, interfacial tension, and the densities of the drop and the surrounding fluid on the maximum and detached drop volumes are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After briefly discussing the question of a distinct mixed valent state and theoretical models for it, the area of greatest theoretical success, namely the mixed valent impurity, is reviewed. Applications to spectroscopy, energetics and Hall effect are then putlined. The independent impurity approximation is inadequate for many properties of the bulk system, which depend on lattice coherence. A recent auxiliary or slave boson approach with a simple mean field limit and fluctuation corrections is summarized. Finally the mixed valent semiconductor is discussed as an outstanding problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the consistency, unitarity and Lorentz invariance of an anomalous U(1) gauge theory in four dimensions. Our analysis is based on an effective low-energy action valid in the chiral symmetry broken phase. The allegedly bad properties of anomalous theories (except non-renormalizability) are examined. It is shown that, in the low-energy context, the theory can be consistently and unitarily quantised, and is formally Lorentz covariant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessary and sufficient condition for the existence of the one-parameter scale function, the /Munction, is obtained exactly. The analysis reveals certain inconsistency inherent in the scaling theory, and tends to support Motts’ idea of minimum metallic conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbative scaling theory for calculating static thermodynamic properties of arbitrary local impurity degrees of freedom interacting with the conduction electrons of a metal is presented. The basic features are developments of the ideas of Anderson and Wilson, but the precise formulation is new and is capable of taking into account band-edge effects which cannot be neglected in certain problems. Recursion relations are derived for arbitrary interaction Hamiltonians up to third order in perturbation theory. A generalized impurity Hamiltonian is defined and its scaling equations are derived up to third order. The strategy of using such perturbative scaling equations is delineated and the renormalization-group aspects are discussed. The method is illustrated by applying it to the single-impurity Kondo problem whose static properties are well understood.