65 resultados para Green innovation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a blue/green inorganic material, Ba(3)(P(1-x)-Mn(x)O(4))(2) (I) based on tetrahedral MnO(4)(3-):3d(2) chromophore. The solid solutions (I) which are sky-blue and turquoise-blue for x <= 0.25 and dark green for x >= 0-50, are readily synthesized in air from commonly available starting materials, stabilizing the MnO(4)(3-) chromophore in an isostructural phosphate host. We suggest that the covalency/ionicity of P-O/Mn-O bonds in the solid solutions tunes the crystal field strength around Mn(V) such that a blue colour results for materials with small values of x. The material could serve as a nontoxic blue/green inorganic pigment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing and developing ideal catalyst paves the way to green chemistry. The fields of catalysis and nanoscience have been inextricably linked to each other for a long time. Thanks to the recent advances in characterization techniques, the old technology has been revisited with a new scope. The last decade has witnessed a flood of research activity in the field of nanocatalysis, with most of the studies focusing on the effect of size on catalytic properties. This led to the development of much greener catalysts with higher activity, selectivity and greater ease of separation from the reaction medium. This Minireview describes the emerging trends in the field of nanocatalysis with implications towards green chemistry and sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10. nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3. s and the detection limit of ammonia solution, 1. ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes (OLEDs). A number of OLED devices have been fabricated with combinations of hole injecting and hole blocking layers of varying thicknesses. Even though hole blocking and hole injection layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc (Copper(II) phthalocyanine) layer, used as hole injection layer and BCP (2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline) used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing is achieved and luminous efficiency and power efficiency were optimized. The maximum luminous efficiency of 3.82 cd/A at a current density of 24.45 mA/cm(2) and maximum power efficiency of 2.61 lm/W at a current density of 5.3 mA/cm(2) were achieved. We obtained luminance of 5993 cd/m(2) when current density was 140 mA/cm(2). The EL spectra was obtained for the LEDs and found that it has a peaking at 524 nm of wavelength. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.