66 resultados para Golden Gate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional metal oxide semiconductor field effect transistor (MOSFET)may not be suitable for future low standby power (LSTP) applications due to its high off-state current as the sub-threshold swing is theoretically limited to 60mV/decade. Tunnel field effect transistor (TFET) based on gate controlled band to band tunneling has attracted attention for such applications due to its extremely small sub-threshold swing (much less than 60mV/decade). This paper takes a simulation approach to gain some insight into its electrostatics and the carrier transport mechanism. Using 2D device simulations, a thorough study and analysis of the electrical parameters of the planar double gate TFET is performed. Due to excellent sub-threshold characteristics and a reverse biased structure, it offers orders of magnitude less leakage current compared to the conventional MOSFET. In this work, it is shown that the device can be scaled down to channel lengths as small as 30 nm without affecting its performance. Also, it is observed that the bulk region of the device plays a major role in determining the sub-threshold characteristics of the device and considerable improvement in performance (in terms of ION/IOFF ratio) can be achieved if the thickness of the device is reduced. An ION/IOFF ratio of 2x1012 and a minimum point sub-threshold swing of 22mV/decade is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter investigates the influence of a corrugated gate on the transfer characteristics of thin-film transistors. Corrugations that run parallel to the length of the channel from source to drain are patterned on the gate. The author finds that these corrugations result in higher currents as compared to conventional planar-gate transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly transparent all ZnO thin film transistor (ZnO-TFT) with a transmittance of above 80% in the visible part of the spectrum, was fabricated by direct current magnetron sputtering, with a bottom gate configuration. The ZnO-TFT with undoped ZnO channel layers deposited on 300 nm Zn0.7Mg0.3O gate dielectric layers attains an on/off ratio of 104 and mobility of 20 cm2/V s. The capacitance-voltage (C−V) characteristics of the ZnO-TFT exhibited a transition from depletion to accumulation with a small hysteresis indicating the presence of oxide traps. The trap density was also computed from the Levinson’s plot. The use of Zn0.7Mg0.3O as a dielectric layer adds additional dimension to its applications. The room temperature processing of the device depicts the possibility of the use of flexible substrates such as polymer substrates. The results provide the realization of transparent electronics for next-generation optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance characteristics of a junction field-effect transistor (j.f.e.t.) are evaluated considering the presence of the gap between the gate electrode and the source and drain terminals. It is concluded that the effect of the gap is to demand a higher drain voltage to maintain the same drain current. So long as the device is operated at the same drain current, the presence of the gap does not change the performance of the device as an amplifier. The nature of the performance of the device as a variable resistor is not affected by the gap if it is less than or equal to the physical height of the channel. For gap lengths larger than the channel height, the effect of the gap is to add a series resistance in the drain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gate driver is an integral part of every power converter, drives the power semiconductor devices and also provides protection for the switches against short-circuit events and over-voltages during shut down. Gate drive card for IGBTs and MOSFETs with basic features can be designed easily by making use of discrete electronic components. Gate driver ICs provides attractive features in a single package, which improves reliability and reduces effort of design engineers. Either case needs one or more isolated power supplies to drive each power semiconductor devices and provide isolation to the control circuitry from the power circuit. The primary emphasis is then to provide simplified and compact isolated power supplies to the gate drive card with the requisite isolation strength and which consumes less space, and for providing thermal protection to the power semiconductor modules for 3-� 3 wire or 4 wire inverters.