45 resultados para Gold mines and mining.
Resumo:
Tialite, beta-Al2TiO5, a low expansion material, has been synthesised by the combustion of corresponding metal nitrates and carbohydrazide (CH) or urea redox mixtures at 500-degrees-C. As prepared powders contained tialite, rutile, and corundum in the mole ratios of 50:25:25 (CH) and 20:40:40 (urea). The combustion derived powders, when calcined 30 min at 1300-degrees-C, gave single phase beta-tialite having a surface area of 20-25 m2 g-1 and a particle size of 0.79-1.03 mum.
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
The precipitation kinetics of the quenched dilute Ti-1.6 at.-%N alloy has been followed by resistivity measurements at 77 K using the four probe method. Resistivity behaviour has been studied for various durations for the alloys aged in the temperature range 273-373 K. The resistivity behaviour has been explained on the basis of the growth and decay of interfacial strain fields associated with the precipitation process. In addition, the resistivity changes have been correlated with transmission electron microscopy observations. (C) 1995 The Institute of Materials.
Role of Li+ ions in corrosion behaviour of 8090 Al-Li alloy and aluminium in pH 12 aqueous solutions
Resumo:
The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.
Resumo:
A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..
Resumo:
Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical profiles of exfoliated graphite electrodes (EG) and glassy carbon electrodes (GCE) were recorded using cyclic voltammetry and square wave voltammetry in the presence of various supporting electrolytes and Fe(CN)(6)](3-/4-), Ru(NH3)(6)](2+/3+), ferrocene redox probes. In the supporting electrolytes (KCl, H2SO4, NaOH, tetrabutylammoniumtetraflouroborate, phosphate buffers), the potential windows of EG were found in some cases to be about 200 mV larger than that of GCE. The electroactive surface area of EG was estimated to be 19.5 % larger than the GCE which resulted in higher peak currents on the EG electrode. Furthermore, EG was modified with various nanomaterials such as poly (propylene imine) dendrimer, gold nanoparticles, and dendrimer-gold nanoparticles composite. The morphologies of the modified electrodes were studied using scanning electron microscopy and their electrochemical reactivities in the three redox probes were investigated. The current and the reversibility of redox probes were enhanced with the presence of modifiers in different degrees with dendrimer and gold nanoparticles having a favorable edge.
Resumo:
Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Resumo:
Thin films of hybrid arrays of cadmium selenide quantum dots and polymer grafted gold nanoparticles have been prepared using a BCP template. Controlling the dispersion and location of the respective nanoparticles allows us to tune the exciton-plasmon interaction in such hybrid arrays and hence control their optical properties. The observed photoluminescence of the hybrid array films is interpreted in terms of the dispersion and location of the gold nanoparticles and quantum dots in the block copolymer matrix.
Resumo:
Before the spread of extensive settled cultivation, the Indian subcontinent would have been inhabited by territorial hunter–gatherers and shifting cultivators with cultural traditions of prudent resource use. The disruption of closed material cycles by export of agricultural produce to centres of non-agricultural population would have weakened these traditions. Indeed, the fire-based sacrificial ritual and extensive agricultural settlements might have catalysed the destruction of forests and wildlife and the suppression of tribal peoples during the agricultural colonization of the Gangetic plains. Buddhism, Jainism and later the Hindu sects may have been responses to the need for a reassertion of ecological prudence once the more fertile lands were brought under cultivation. British rule radically changed the focus of the country's resource use pattern from production of a variety of biological resources for local consumption to the production of a few commodities largely for export. The resulting ecological squeeze was accompanied by disastrous famines and epidemics between the 1860s and the 1920s. The counterflows to tracts of intensive agriculture have reduced such disasters since independence. However, these are quite inadequate to balance the state-subsidized outflows of resources from rural hinterlands. These imbalances have triggered serious environmental degradation and tremendous overcrowding of the niche of agricultural labour and marginal cultivator all over the country.
Resumo:
The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750-1200-degrees-C and strain rate range 0.0003-100 s-1 using processing maps developed in the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m + 1)]. where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925-degrees-C and 1 s-1. The published results are in agreement with the prediction of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variation of hot ductility. The stress-strain curves exhibited a single peak in a single peak in the dynamic recrystallisation domain, whereas multiple peaks and 'drooping' stress-strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.
Resumo:
Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.