264 resultados para Glass-forming Ability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time beta relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time alpha-relaxation regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the quaternary Ti-Zr-Hf-Ni phase diagram. the cross-section at 20 at % Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (TixZryHfz)(80)Ni-20 (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 and Ti20Zr40Hf20Ni20 alloys. respectively. The icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 alloy especially is thermodynamically stable. The supercooled liquid region of the Ti20Zr20Hf40Ni20 glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities, was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (TixZryHfz)(80)Ni-20 alloys. On the other hand. an increase in Ti content caused an improvement in quasicrystal-forming ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AI83Y10Ni7, AI80Y10Ni10 and AI80Y10Cu10 alloys were studied by the rapid solidification processing route. The glass-forming ability was found to decrease in the order of alloys mentioned above. Differential scanning calorimetry (DSC) of these amorphous alloys showed that the amorphous phase in AI-Y-Ni alloys has a higher thermal stability when compared to that in AI-Y-Cu alloys. A four-stage crystallization sequence could be identified for the AI-Y-Ni amorphous alloys. Even though the AI80Y10Cu10 alloy showed four exothermic peaks in the DSC study, a definite crystallization sequence could not be arrived at due to the coexistence of many crystalline phases along with the amorphous phase in the melt-spun condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of various milling parameters such as, milling intensity, ball:powder weight ratio and number of balls on the glass forming ability of an elemental blend of composition Ti50Ni50 has been studied by mechanical alloying. In order to understand the results, all the milling parameters have been converted into two energy parameters, namely, impact energy of the ball and the total energy of milling. In a milling map of these two parameters, the conditions for amorphous phase formation have been isolated. A similar exercise has been carried out for Ti50Cu50 as a function of milling time at two milling intensities. The results indicate that a minimum impact energy of the ball and a minimum total energy are essential for amorphization by mechanical alloying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on the switching behaviour of arsenic-tellurium glasses with Ge or Al additives, yield interesting information about the dependence of switching on network rigidity, co-ordination of the constituents, glass transition & ambient temperature and glass forming ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated thermal properties of bulk Si15Te85-xAgx (4 <= x <= 20) glasses in detail, through alternating differential scanning calorimetry experiments. The composition dependence of thermal parameters reveal the signatures of rigidity percolation and chemical threshold at compositions x = 12 and x = 19, respectively. The stability and glass forming ability of these glasses have also been determined using the data obtained from different thermodynamic quantities and it is found that the Si15Te85-xAgx glasses in the region 12 <= x <= 17 are more stable when compared to other glasses of the same series. Further, the blueshift observed in Raman spectroscopy investigations, in the composition range 12 <= x <= 13, support the occurrence of stiffness threshold in this composition range. All Si15Te85-xAgx (4 <= x <= 20) glasses are found to exhibit memory type switching (for sample thickness 0.25 mm) in the input current range 3-9 mA. The effect of rigidity percolation and chemical thresholds on switching voltages are observed at x = 12 and 19, respectively. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682759]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk Se60-xTe40Sbx glasses in the composition range 0 <= x <= 14 were prepared by the melt quenching method. Differential Scanning Calorimetric (DSC) and thermal crystallization studies were performed to understand the thermodynamic property like glass transition and structural transformations. These glasses exhibit sharp endothermic peak at the glass transition (T-g). Disappearance of the endothermic peak at T-g in the rejuvenated samples clearly indicates the ageing effect in these glasses. Addition of Sb to Se-Te increases the connectivity of the structural network which is evidenced from the increase in T-g. A distinct change in the slope of the T-g at x=6, indicates a major change in the way the network is connected. The glass forming ability and the thermal stability also exhibit a maximum at x=6. T-g increases with the ageing time and the corresponding fictive temperature (T-f) calculated from the specific heat curves shows a decreasing trend. The molecular movements along the polymeric Se chains might cause the structural relaxation and the physical ageing. The physical ageing effect has been understood on the basis of the Bond Free Solid Angle (BFSA) model proposed by Kastner. Thermally crystallized samples show the formation of rhombohedral Sb2Te3, rhombohedral Sb2Se3 and hexagonal Te phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal properties and electrical-switching behavior of semiconducting chalcogenide SbxSe55-xTe45 (2 <= x <= 9) glasses have been investigated by alternating differential scanning calorimetry and electrical-switching experiments, respectively. The addition of Sb is found to enhance the glass forming tendency and stability as revealed by the decrease in non-reversing enthalpy Delta H-nr. and an increase in the glass-transition width Delta T-g. Further, the glass-transition temperature of SbxSe55-xTe45 glasses, which is a measure of network connectivity, exhibits a subtle increase, suggesting a meager network growth with the addition of Sb. The crystallization temperature is also observed to increase with Sb content. The SbxSe55-xTe45 glasses (2 <= x <= 9) are found to exhibit memory type of electrical switching, which can be attributed to the polymeric nature of network and high devitrifying ability. The metallicity factor has been found to dominate over the network connectivity and rigidity in the compositional dependence of switching voltage. which shows a profound decrease with the addition of Sb.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structure of real glasses has been considered to be microheterogeneous, composed of clusters and connective tissue. Particles in the cluster are assumed to be highly correlated in positions. The tissue is considered to have a truly amorphous structure with its particles vibrating in highly anharmonic potentials. Glass transition is recognized as corresponding to the melting of clusters. A simple mathematical model has been developed which accounts for various known features associated with glass transition, such as range of glass transition temperature,T g, variation ofT g with pressure, etc. Expressions for configurational thermodynamic properties and transport properties of glass forming systems are derived from the model. The relevence and limitations of the model are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Ge-As-Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5-x glasses over extended composition ranges. A distinct change in T-g is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (T-g) at x = 55 corresponding to the average coordination number (Z(av)) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Z(av) = 2.40 as predicted by the recent theories. The glass forming tendency (K-gl) and Delta T (=T-c-T-g) is low for the glasses in the GFR I and high for the glasses in the GFR II.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth of characteristic length scales associated with dynamic heterogeneity in glass-forming liquids is investigated in an extensive computational study of a four-point, time-dependent structure factor defined from spatial correlations of mobility, for a model liquid for system sizes extending up to 351 232 particles, in constant-energy and constant-temperature ensembles. Our estimates for dynamic correlation lengths and susceptibilities are consistent with previous results from finite size scaling. We find scaling exponents that are inconsistent with predictions from inhomogeneous mode coupling theory and a recent simulation confirmation of these predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of PbO---PbF2 glasses has been studied using molecular dynamics (MD). The existence of [OPb4] structural units is observed over the entire glass-forming range, in conformity with a model proposed earlier based on various structural investigations of this system. Various other features of the structural model are also supported by the MD calculations.