21 resultados para Glass painting and staining in France.
Resumo:
The applicability of the confusion principle and size factor in glass formation has been explored by following different combinations of isoelectronic Ti, Zr and Hf metals. Four alloys of nominal composition Zr41.5Ti41.5Ni17, Zr41.5Hf41.5Ni17, Zr25Ti25Cu50 and Zr34Ti16Cu50 have been rapidly solidified to obtain an amorphous phase and their crystallisation behaviour has been studied. The Ti-Zr-Ni alloy crystallises in three steps. Initially this alloy precipitates icosahedral quasicrystalline phase, which on further heat treatment precipitates cF96 Zr2Ni phase. The Zr-Hf-Ni alloy can not be amorphised under the same experimental conditions. The amorphous Zr-Ti-Cu alloys at the initial stages of crystallisation phase-separateinto two amorphous phases and then on further heat treatment cF24 Cu5Zr and oC68 Cu10Zr7 phase are precipitated. The lower glass-forming abilityof Zr-Hf-Ni alloy and the crystallisation behaviour of the above alloys has been studied. The rationale behind nanoquasicrystallisation and the formation of other intermetallic phases has been explained.
Resumo:
We present the magnetic properties of polycrystalline Dy1−xSrxMnO3 (0.1 ≤ x ≤ 0.4) with an orthorhombic (o) crystal structure. The parent compound, o-DyMnO3, undergoes an incommensurate antiferromagnetic ordering of the Mn spins at 39 K, followed by a spiral order at 18 K. A further antiferromagnetic transition at 5 K marks an ordering of the Dy-sublattice. Doping of divalent Sr ions results in diverse magnetization phenomena. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves display the presence of strongly interacting magnetic sublattices. For x = 0.1 and 0.2, a bifurcation between the ZFC and FC magnetization sets in at around 30 and 32 K, respectively. The ZFC magnetization peaks at about 5 K, indicating antiferromagnetic Dy-couplings similar to the case of o-DyMnO3. For x = 0.3, clear signatures of ferrimagnetism and strong anisotropy are found, including negative magnetization. The compound with x = 0.4 behaves as a spin glass, similar to Dy0.5Sr0.5MnO3.
Resumo:
Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.
Resumo:
Colloidal systems with competing interactions are known to exhibit a range of dynamically arrested states because of the systems' inability to reach its underlying equilibrium state due to intrinsic frustration. Graphene oxide (GO) aqueous dispersions constitute a class of 2D-anisotropic colloids with competing interactions long-range electrostatic repulsion, originating from ionized groups located on the rim of the sheets, and weak dispersive attractive interactions originating from the unoxidized graphitic domains. We show here that aqueous dispersions of GO exhibit a range of arrested states, encompassing fluid, glass, and gels that coexist with liquid-crystalline order with increasing volume fraction. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces. This can be realized by changing the ionic strength of the medium. We observe at low salt concentrations, where long-range electrostatic repulsion dominates, the formation of a repulsive Wigner glass, while at high salt concentrations, when attractive forces dominate, the formation of gels exhibits a nematic to columnar liquid-crystalline transition. The present work highlights how the chemical structure of GO hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet gives rise to a rich and complex array of arrested states.
Resumo:
DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.