25 resultados para Gerald cohen
Resumo:
We report a universal large deviation behavior of spatially averaged global injected power just before the rejuvenation of the jammed state formed by an aging suspension of laponite clay under an applied stress. The probability distribution function (PDF) of these entropy consuming strongly non-Gaussian fluctuations follow an universal large deviation functional form described by the generalized Gumbel (GG) distribution like many other equilibrium and nonequilibrium systems with high degree of correlations but do not obey the Gallavotti-Cohen steady-state fluctuation relation (SSFR). However, far from the unjamming transition (for smaller applied stresses) SSFR is satisfied for both Gaussian as well as non-Gaussian PDF. The observed slow variation of the mean shear rate with system size supports a recent theoretical prediction for observing GG distribution.
Resumo:
The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.
Resumo:
We study the orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of data presently available and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above similar to 5?keV the modulation depth decreases with increasing energy, which is consistent with the modulation being caused by both boundfree absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below similar to 3?keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies >0.1?GeV in the soft spectral states, is found to be minor up to similar to 100?keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum. We also calculate phase-resolved RXTE X-ray spectra and show that the difference between the spectra corresponding to phases around superior and inferior conjunctions can indeed be accounted for by the combined effect of boundfree absorption in an ionized medium and Compton scattering.
Resumo:
High-level loop transformations are a key instrument in mapping computational kernels to effectively exploit the resources in modern processor architectures. Nevertheless, selecting required compositions of loop transformations to achieve this remains a significantly challenging task; current compilers may be off by orders of magnitude in performance compared to hand-optimized programs. To address this fundamental challenge, we first present a convex characterization of all distinct, semantics-preserving, multidimensional affine transformations. We then bring together algebraic, algorithmic, and performance analysis results to design a tractable optimization algorithm over this highly expressive space. Our framework has been implemented and validated experimentally on a representative set of benchmarks running on state-of-the-art multi-core platforms.
Resumo:
Ab initio GW calculations are a standard method for computing the spectroscopic properties of many materials. The most computationally expensive part in conventional implementations of the method is the generation and summation over the large number of empty orbitals required to converge the electron self-energy. We propose a scheme to reduce the summation over empty states by the use of a modified static remainder approximation, which is simple to implement and yields accurate self-energies for both bulk and molecular systems requiring a small fraction of the typical number of empty orbitals.
Resumo:
The GW approximation to the electron self-energy has become a standard method for ab initio calculation of excited-state properties of condensed-matter systems. In many calculations, the G W self-energy operator, E, is taken to be diagonal in the density functional theory (DFT) Kohn-Sham basis within the G0 W0 scheme. However, there are known situations in which this diagonal Go Wo approximation starting from DFT is inadequate. We present two schemes to resolve such problems. The first, which we called sc-COHSEX-PG W, involves construction of an improved mean field using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange), which is significantly simpler to treat than GW W. In this scheme, frequency-dependent self energy E(N), is constructed and taken to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this formalism. The second method is called off diagonal-COHSEX G W (od-COHSEX-PG W). In this method, one does not self-consistently change the mean-field starting point but diagonalizes the COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and uses the resulting orbitals to construct the G W E in the diagonal form. We apply both methods to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane, both methods give good quasiparticle wave functions and energies. Both methods give good band gaps for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX-PGW method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap) in bulk Ge under pressure.
Resumo:
Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.
Resumo:
Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models, the advanced features being introduced into task-parallelmodels in turn enable improved scalability through load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect, reduced power consumption. In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations that range from linear algebra to structured grids and image processing. The proposed static analysis and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream, a representative dataflow task-parallel language with explicit intertask dependences and a lightweight runtime. Experimental results demonstrate the effectiveness of the approach.
Resumo:
Let Gamma subset of SL2(Z) be a principal congruence subgroup. For each sigma is an element of SL2(Z), we introduce the collection A(sigma)(Gamma) of modular Hecke operators twisted by sigma. Then, A(sigma)(Gamma) is a right A(Gamma)-module, where A(Gamma) is the modular Hecke algebra introduced by Connes and Moscovici. Using the action of a Hopf algebra h(0) on A(sigma)(Gamma), we define reduced Rankin-Cohen brackets on A(sigma)(Gamma). Moreover A(sigma)(Gamma) carries an action of H 1, where H 1 is the Hopf algebra of foliations of codimension 1. Finally, we consider operators between the levels A(sigma)(Gamma), sigma is an element of SL2(Z). We show that the action of these operators can be expressed in terms of a Hopf algebra h(Z).
Resumo:
The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.