113 resultados para Gaucelm Faidit, fl. 1156-1209.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

C6HxsN40 +.C4H6NO~-, monoclinic, P2,,a = 5.511 (3), b = 8.438 (4), c = 15.265 (9) A, fl = 97.9 (I) °, D,, -- 1.467 (8) (flotation), D c = 1.452 Mg m -a, Z = 2. The structure has been refined to a final R value of 0.044 for 1226 independent counter-measured reflections. The conformation of the arginine molecule is different from those previously observed, whereas the conformation of the aspartate ion is similar to that found in L-aspartic acid, DL-aspartic acid and L-lysine L-aspartate. The unlike molecules aggregate into separate alternating layers and the a-amino and acarboxylate groups in the arginine layer are periodically brought into close proximity in a 'headto-tail' arrangement. There exist a specific ion-pair interaction involving electrostatic attraction and two nearly parallel N-H...O hydrogen bonds between the guanidyl group and the a-carboxylate group of the aspartate ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 944.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C6H604, Mr = 142, triclinic, P[, a = 4.842(1), b = 7.607(1), c = 9.168 (3) A, ~ = 98.41(2), fl = 99.89(2), y = 77.74(1) ° , V = 320.9/k 3, Z = 2, Dm= 1.45 (flotation), D x = 1.470 g cm -3, p(Mo Ktt, 2 = 0.7107 A) = 0.63 cm -~, F(000) = 148. The structure was solved by direct methods and refined to an R value of 0.038 for 723 intensity measurements. The geometrical changes in the cyclopropane ring are discussed in the light of substituent effects. In the crystal structure the carboxylic groups are disordered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adriamycin (Doxorubicin) stimulates NADH oxidase activity in liver plasma membrane, but does not cause NADH oxidase activity to appear where it is not initially present, as in erythrocyte membrane. NADH dehydrogenase from rat liver and erythrocyte plasma membranes shows similar adriamycin effects with other electron acceptors. Both NADH ferricyanide reductase and vanadate-stimulated NADH oxidation are inhibited by adriamycin, as is a cyanide insensitive ascorbate oxidase activity, whereas NADH cytochrome c reductase is not affected. The effects may contribute to the growth inhibitory (control) and/or deleterious effects of adriamycin. It is clear that adriamycin effects on the plasma membrane dehydrogenase involve more than a simple catalysis of superoxide formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxyphenbutazone, C19H20N203, a metabolite and perhaps the active form of phenylbutazone, is a widely used non-narcotic analgesic and anti-inflammatory pyrazolidinedione derivative. The monohydrate of the compound crystallizes in the triclinic space group Pi with two molecules in a unit cell of dimensions a -- 9.491 (4), b = 10.261 (5), c = 11.036 (3)A and ¢~ = 72.2 (1), fl = 64.3 (1), 7 = 73.0 (1) °. The structure was solved by direct methods and refined to an R value of 0.107 for 1498 observed reflections. The butyl group in the molecule is disordered. The hydroxyl group occupies two sites with unequal occupancies. On account of the asymmetry at the two N atoms and one of the C atoms in the central five-membered ring, the molecule can exist in eight isomeric states, of which four are sterically unfavourable. The disorder in the position of the hydroxyl group can be readily explained on the basis of the existence, with unequal abundances, of all four sterically favourable isomers.The bond lengths and angles in the molecule are similar to those in phenylbutazone. The crystal structure is stabilized by van der Waals interactions, and O-H... O hydrogen bonds involving the carbonyl and the hydroxyl groups as well as a water molecule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CsHaN205, PL a = 6.438 (2), b = 7.486 (3), c = 8.048 (4)A, a = 72.2(1), fl = 80.8(1), y = 76.4 (1) °, D m = 1.65 (1) (flotation), D c = 1.64 Mg m -3, Z = 2. Final R = 0.095 for 1205 observed reflections. The molecule assumes the sterically least favourable conformation with the side chain carboxyl group staggered between the a-carboxyl group and the N atom attached to C '~. The ureido group takes part in two specific interactions involving two nearly parallel hydrogen bonds in one and two convergent hydrogen bonds in the other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-Arginine ascorbate, C6HIsN40+.C6H706, a 1"1 crystalline complex between the amino acid arginineand the vitamin ascorbic acid, crystallizes in the monoclinic space group P21 with two formula units in a cell of dimensions a = 5.060 (8), b = 9.977 (9), c = 15.330 (13) A, fl = 97.5 (2) °. The structure was solved by the symbolic addition procedure and refined to an R of 0.067 for 1501 photographically observed reflec- tions. The conformation of the arginine molecule in the structure is different from any observed so far. The present structure provides the first description of the ascorbate anion unaffected by the geometrical constraints and disturbances imposed by the requirements of metal coordination. The lactone group and the deprotonated enediol group in the anion are planar and the side chain assumes a conformation which appears to be sterically the most favourable. In the crystals, the arginine molecules and the ascorbate anions aggregate separately into alternating layers. The molecules in the arginine layer are held together by interactions involving a-amino and ~t-carboxylate groups, a situation analogous to that found in proteins. The two layers of unlike molecules are interconnected primarily through the interactions of the side-chain guanidyl group of arginine with the ascorbate ion. These involve a specific ion-pair interaction accompanied by two convergent hydrogen bonds and another pair of nearly parallel hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal structures of the title compounds, (I) and (II), have been determined by three-dimensional diffraction methods. Crystals of CsHIoN 4 (I) are monoclinic, space group P21/a with Z = 4, Mr= 162, a = 7.965 (1), b = 16.232 (2), c = 7.343 (1) A, fl = 113.54 (1) °, V = 890.7 A 3, D,n = 1.218, D x = 1.208 gcm -3, g(Cu Ka, 2 = 1.5418/~) = 6.47 em -1, F(000) = 344. The crystals of C9H12N4 (II) are orthorhombic, space group P21en, with Z = 4, Mr = 176, a = 7.983 (3), b = 8.075 (2), c = 14.652 (3) ./k, V = 44.43/~3, Dm= 1.219, D x = 1.237 g cm -3, #(Mo Ka, ). = 0.7107 ,/k) = 0.868 cm -1, F(000) = 376. Both structures were solved by direct methods and refined to R = 5.8% for (I) and 5.3 % for (II). The C-C double-bond distances are 1.407 (3) in (I) and 1.429 (6)/~ in (II), appreciably longer than normal. The steric and push-pull effects result in rotation about the C=C bond, the rotation angles being 20.2 (3) in (I) and 31.5 (6) o in (II).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate of NADH oxidation with oxygen as the acceptor is very low in mouse liver plasma membrane and erythrocyte membrane. When vanadate is added, this rate is stimulated 10- to 20-fold. The absorption spectrum of vanadate does not change with the disappearance of NADH. The reaction is inhibited by superoxide dismutase, and there is no activity under an argon atmosphere. This indicates that oxygen is the electron acceptor and the reaction is mediated by superoxide. The vanadate stimulation is not limited to plasma membrane. Golgi apparatus and endoplasmic reticulum show similar increase in NADH oxidase activity when vanadate is added. The endomembranes have significant vanadate-stimulated activity with both NADH and NADPH. The vanadate-stimulated NADH oxidase in plasma membrane is inhibited by compounds, which inhibit NADH dehydrogenase activity: catechols, anthracycline drugs and manganese. This activity is stimulated by high phosphate and sulfate anion concentrations.