156 resultados para Galaxy: disc
Resumo:
In this paper, an effort is made to study accurately the field distribution for various types of ceramic insulators used for high-voltage transmission. The surface charge simulation method (SCSM) is employed for the field computation. With the help of SCSM program, a Novel field reduction electrode is designed and developed to reduce the maximum field around the pin region. In order to experimentally analyze the performance of discs with field reduction electrode, special artificial pollution test facility was built and utilized. The experimental results show better surface flashover performance of ceramic insulators used in high-voltage transmission and distribution systems.
Resumo:
A method for mass production of rosewood (Dalbergia latifolia Roxb.) trees through leaf disc organogenesis was developed and standardized. Compact callus was initiated from mature leaf discs on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg 1?1 2,4-dichlorophenoxy acetic acid (2,4-D), 5.0 mg 1?1 ?-naphthaleneacetic acid (NAA), 1.0 mg 1?1 6-benzylaminopurine (BAP) and 10% coconut water (CW). High frequency (15�20 shoots/g callus) regeneration of shoot bud differentiation was obtained on MS (3/4 reduced major elements) or Woody Plant Medium (WPM) or modified Woody Plant Medium (mWPM) supplemented with BAP (5.0 mg 1?1) and NAA (0.5 mg 1?1). Leaf abscission and shoot tip necrosis was controlled using mWPM. About 90% of the excised shoots were rooted in the mWPM supplemented with 2.0 mg 1?1 ?-indolebutyric acid (IBA) and 1.0 mg 1?1 caffeic acid. The in vitro-raised rooted plantlets were hardened for successful transplantation to soil. The transplanted plants were exposed to various humidity conditions and 80% transplant success was achieved. The in vitro-raised leaf-regenerated plants grew normally and vigorously in soil.
Resumo:
A method involving eigenfunction expansion and collocation is employed to solve the axisymmetric problem of a slowly and steadily rotating circular disc in a fluid of finite extent whose surface is covered with a surfactant film. The present method (originally described by Wang (Acta Mech. 94, 97, 1992)) is observed to produce results of practical importance associated with the problem more quickly and more easily than the one used earlier by Shail and Gooden (Int. J. Multiphase Flow 7, 245, 1992). (C) 1994 Academic Press, Inc.
Resumo:
This paper presents laboratory investigations on the visible corona and discharge radio noise. Experimental investigations are carried on various types of normal and anti-fog types of ceramic disc insulator at the recently established artificial pollution experimental facility. The results obtained from the experimental investigations show better performance for the disc insulators fitted with field reduction electrodes. In addition to the corona and radio noise investigations the comparisons are also made for the experimental results of the potential distribution across the insulator string (with and without filed reduction electrode) with the simulation results obtained by using Surface Charge Simulation Method.
Resumo:
Sliding wear characteristics and mechanisms of structural ceramics, namely Al2O3, zirconia-toughened alumina, tetragonal zirconia polycrystals (TZP) and Si3N4 against a steel counterface are influenced by mechanical and tribochemical interactions, specific to the combinations studied. The present paper studies the role of the disc in the sliding wear process of the above ceramics. Experiments were conducted at a pressure of 15.5 MPa between 0.1 and 12.0 m s(-1) with ceramic pins sliding against an EN-24 steel disc. Except in the case of TZP, the disc morphology is sensitive to variations in speed rather than to the pin material. The disc track is (i) mildly abraded at low speeds (about 0.1-0.75 m s(-1)), (ii) severely abraded at intermediate speeds (about 1.0-3.0 m s(-1)), (iii) covered with black patches at high speeds (about 4.0-6.0 m s(-1)) and (iv) completely black at very high speeds (about 7.0-12.0 m s(-1)). In the case of TZP, although black patches appear, transfer of TZP onto the disc surface and high wear of TZP occurs at 4.0 m s(-1). The order of the wear of the disc estimated from profilometric measurements is the same for all the ceramics. Except for Si3N4, the onset of wear of the ceramics is associated with the appearance of deep 'V' grooves on either side of the profile of the disc track. This can be explained on the basis of the thermal and hardness variations. Although other interaction products specific to the ceramic pin are present, the formation of iron oxides dominates the wear of the disc.
Resumo:
The frequently observed lopsidedness of the distribution of stars and gas in disc galaxies is still considered as a major problem in galaxy dynamics. It is even discussed as an imprint of the formation history of discs and the evolution of baryons in dark matter haloes. Here, we analyse a selected sample of 70 galaxies from the Westerbork Hi Survey of Spiral and Irregular Galaxies. The Hi data allow us to follow the morphology and the kinematics out to very large radii. In the present paper, we present the rotation curves and study the kinematic asymmetry. We extract the rotation curves of the receding and approaching sides separately and show that the kinematic behaviour of disc galaxies can be classified into five different types: symmetric velocity fields where the rotation curves of the receding and approaching sides are almost identical; global distortions where the rotation velocities of the receding and approaching sides have an offset that is constant with radius; local distortions leading to large deviations in the inner and negligible deviations in the outer parts (and vice versa); and distortions that divide the galaxies into two kinematic systems that are visible in terms of the different behaviour of the rotation curves of the receding and approaching sides, which leads to a crossing and a change in side. The kinematic lopsidedness is measured from the maximum rotation velocities, averaged over the plateau of the rotation curves. This gives a good estimate of the global lopsidedness in the outer parts of the sample galaxies. We find that the mean value of the perturbation parameter denoting the lopsided potential as obtained from the kinematic data is 0.056. Altogether, 36% of the sample galaxies are globally lopsided, which can be interpreted as the disc responding to a halo that was distorted by a tidal encounter. In Paper II, we study the morphological lopsidedness of the same sample of galaxies.
Resumo:
A procedure to design a constant thickness composite disc of uniform strength by radially tailoring the anisotropic elastic constants is proposed. A special case of an isotropic disc with radially varying modulus is also examined. Analytical results are also compared with FEM calculations for two cases of radially varying anisotropy and for an isotropic disc with variable modulus. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.
Resumo:
In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.
Resumo:
A galactic disk in a spiral galaxy is generally believed to be embedded in an extended dark matter halo, which dominates its dynamics in the outer parts. However, the shape of the halo is not clearly understood. Here we show that the dark matter halo in the Milky Way is prolate in shape. Further, it is increasingly more prolate at larger radii, with the vertical-to-planar axis ratio monotonically increasing to 2.0 at 24 kpc. This is obtained by modeling the observed steeply flaring atomic hydrogen gas layer in the outer Galactic disk, where the gas is supported by pressure against the net gravitational field of the disk and the halo. The resulting prolate-shaped halo can explain several long-standing puzzles in galactic dynamics, for example, it permits long-lived warps thus explaining their ubiquitous nature.
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.
Resumo:
Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.