98 resultados para GN Anthropology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average dimensions of the peptide unit have been obtained from the data reported in recent crystal structure analyses of di- and tripeptides. The bond lengths and bond angles agree with those in common use, except for the bond angle C---N---H, which is about 4° less than the accepted value, and the angle C2α---N---H which is about 4° more. The angle τ (Cα) has a mean value of 114° for glycyl residues and 110° for non-glycyl residues. Attention is directed to these mean values as observed in crystal structures, as they are relevant for model building of peptide chain structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical results derived in Part I (Ramachandran, G.N., Lakshminarayan, A.V. and Kolaskar, A.S. (1973) Biochim. Biophys. Acta 303, 8–13) that the three bonds of the peptide unit meeting at N can have a pyramidal structure is confirmed by an analysis of 14 published crystal structures of small peptides. It is shown that the dihedral angles θN and Δω are correlated, while θC, is small and is uncorrelated with Δω, showing that the non-planar distortion at C′ is generally small.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of CNDO/2 calculations on N-methyl acetamide, it is shown that the state of minimum energy of the trans-peptide unit is a non-planar conformation, with the NH and NC2α bonds being significantly out of the plane formed by the atoms C1α, C′, O and N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conformation of three linked peptide units having an internal 4 → 1 type of hydrogen bond has been studied in detail, and the low energy conformations are listed. These conformations all lead to the reversal of the chain direction, and may therefore be called as “hairpin bends” or “U-bends”. Since this bend can occur at the end of two chains hydrogen-bonded in the antiparallel β-conformation, it is also known as the “β-bend”. Two types of conformation are possible when the residues at the second and third Cα atoms are both of type L (the LL bend), while only one type is possible for the LD and the DL bend. The LL bend can also accommodate the sequences LG, GL, GG (G = glycine), while the LD bend can accommodate the sequences LG, GD and GG. The conformations for the sequences DD and DL are exact inverses (or mirror images) of those for the sequences LL and LD, respectively, and have dihedral angles (phi2, ψ2), (phi3, ψ3) of the same magnitudes, but of opposite signs as those for the former types, which are listed, along with the characteristics (length, angle and energy) of the hydrogen bonds. A comparison of the theoretical predictions with experimental data (from X-ray diffraction and NMR studies) on proteins and peptides, show reasonably good agreement. However, a systematic trend is observable in the experimental data, slightly deviating from theory, which indicates that some deformations occur in the shapes of the peptide units forming the bend, differing from that of the standard planar peptide unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular structure of collagen is now accepted to be based on a triple-stranded coiled-coil, in which the three strands are held together predominantly by hydrogen bonds. Recent experimental evidence has shown that the presence of hydroxyproline residues in the third position of the repeating tripeptide unit lends additional stability to the collagen structure. In this paper, we report a model structure, which is supported by these observations. In a model structure proposed earlier, there are two hydrogen bonds per tripeptide unit, one of which is a direct interchain hydrogen bond, while the second hydrogen bond can be formedvia a water molecule. It has now been shown that the same water molecule can also form a hydrogen bond with the oxygen of theγ-hydroxyl group of hydroxyproline in the third position in the sequence (Gly-R2-R3). This hydroxyl group can also take part in an inter-triple-helix hydrogen bond. Our studies thus show the role played by hydroxyproline residues in the structure and stability of collagen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper describes a novel method of finding the position and orientation of a relatively rigid molecule in the unit cell from criteria concerning allowed contact distances between atoms. On application to the crystal structure of a hexapeptide, C25H31N6O8.2H2O, it was possible to solve the structure from this starting point, by a series of SFLS refinements with an increasingly larger number of reflexions at successive stages. The packing analysis succeeded, even though the water molecules were not included to start with.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rarity of occurrence of cis peptide units is only partially explained by the higher intrinsic energy of the cis over the trans form, which provides a probability of 0·01 for cis peptide units to occur. An additional factor is the conformational restriction imposed by the occurrence of a cis peptide unit in a chain of trans units. Taking a section of three peptide units having the sequences trans-trans-trans (ttt) and trans-cis-trans (tct), conformational energy calculations indicate that the latter can occur only to an extent of 0·1%, unless there occurs the sequence X-Pro, in which case it is of the order of 30%. This explains the extreme rarity of cis peptide units, in general; however, it follows that even with non-prolyl residues, cis peptide units are not forbidden, but can occur in some rare examples and should be looked for.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the collagen triple-helical structure, large side groups occuring at location 3 in the repeating triplet sequences (Gly-Rz-Rz)n are appreciably constrained if a proline residue occurs as Rz in a neighbouring chain. The severity of the steric hindrance depends on the geometry of the prolyl ring. In this paper we propose two different puckerir.gs for the proline ring, the first one being energetically favorable for most types of residue sequences commonly found in collegen while the second is preferable when an amino acid residue with a large side group occurs at location 3 in a neighbouring chain. The puckering of the pyrrolidine ring of hydroxyproline, as proposed earlier, is quite favorable from energy as well as stereochemical considerations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free-fall terminal velocities of single spheres and of single-row assemblies containing up to six spheres, with line of centres of spheres perpendicular to the direction of motion, have been determined in the particle Reynolds numbers range 0.2-4, and interaction effects obtained in the case of assemblies relative to drag on single isolated spheres, are discussed. The observed decrease in the drag on a sphere of an assembly is explained on the basis of theoretical considerations governing flow phenomena in such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The favoured conformations of the prolyl residue have been obtained by calculating their potential energies arising from bond-angle strain, torsion-angle strain, non-bonded and electrostatic interatomic energies. In addition to the five membered ring, the peptide unit at the amino end (with ω = 180°) and the C′ atom at the carboxyl end have been taken into account. It is found that there are two local minima in the configurational space of the parameters defining the conformation, as is actually observed-one (denoted by B) with Cγ displaced on the same side as C′, which is lower in energy than the other (denoted by A) with Cγ displaced on the opposite side of C′. The other four atoms Cδ, N, Cα, Cβ are nearly in a plane. The conformations of minimum energy (for both A and B) have bond angles very close to the mean observed values while the torsion angles are well within the range observed in various structures for each type. Taking into account the fact that the influence of neighbouring molecules in a crystal structure may make the conformation of a molecule different from the minimal one, the ranges of the conformational parameters for which the energy is within 0.6 kcal/mole above the minimum value (called the "most probable range") and within 1.2 kcal/mole (called the "probable range") have been determined. The ranges thus obtained, agree well with observation, and most of the observed data lie within the most probable ranges, although differing appreciably from the conformation of minimum energy. The study has been extended, in a limited way, to the conformation of the ring in the amino acid proline. Since the nitrogen is tetrahedral in this (as contrasted with being planar in the prolyl residue), it is found that any one of the five atoms can be out of plane (either way), with the other four lying nearly in a plane. These correspond to low energy conformations (up to 1.2 kcal/mole above the minimum). One such example, in which the Cα atom is out of plane is known for dl-proline · HCl. It is also shown that in these calculations energies due to bond length distortions can be neglected to a good degree of approximation, provided the 'best' values of the bond lengths for the particular compound are used in the theoretical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A careful comparison of the distribution in the (R, θ)-plane of all NH ... O hydrogen bonds with that for bonds between neutral NH and neutral C=O groups indicated that the latter has a larger mean R and a wider range of θ and that the distribution was also broader than for the average case. Therefore, the potential function developed earlier for an average NH ... O hydrogen bond was modified to suit the peptide case. A three-parameter expression of the form {Mathematical expression}, with △ = R - Rmin, was found to be satisfactory. By comparing the theoretically expected distribution in R and θ with observed data (although limited), the best values were found to be p1 = 25, p3 = - 2 and q1 = 1 × 10-3, with Rmin = 2·95 Å and Vmin = - 4·5 kcal/mole. The procedure for obtaining a smooth transition from Vhb to the non-bonded potential Vnb for large R and θ is described, along with a flow chart useful for programming the formulae. Calculated values of ΔH, the enthalpy of formation of the hydrogen bond, using this function are in reasonable agreement with observation. When the atoms involved in the hydrogen bond occur in a five-membered ring as in the sequence[Figure not available: see fulltext.] a different formula for the potential function is needed, which is of the form Vhb = Vmin +p1△2 +q1x2 where x = θ - 50° for θ ≥ 50°, with p1 = 15, q1 = 0·002, Rmin = 2· Å and Vmin = - 2·5 kcal/mole. © 1971 Indian Academy of Sciences.