81 resultados para GEOLOGICAL TIME-SCALES
Resumo:
While absorption and emission spectroscopy have always been used to detect and characterize molecules and molecular complexes, the availability of ultrashort laser pulses and associated computer-aided optical detection techniques allowed study of chemical processes directly in the time domain at unprecedented time scales, through appearance and disappearance of fluorescence from participating chemical species. Application of such techniques to chemical dynamics in liquids, where many processes occur with picosecond and femtosecond time scales lead to the discovery of a host of new phenomena that in turn led to the development of many new theories. Experiment and theory together provided new and valuable insight into many fundamental chemical processes, like isomerization dynamics, electron and proton transfer reactions, vibrational energy and phase relaxation, photosynthesis, to name just a few. In this article, we shall review a few of such discoveries in attempt to provide a glimpse of the fascinating research employing fluorescence spectroscopy that changed the field of chemical dynamics forever.
Resumo:
The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are based on the bulk method using measurements made at two levels on a micrometeorological tower of 10 m height. The bulk flux formulation is verified by comparing its fluxes with direct fluxes using sonic anemometer data sampled at 10 Hz. Soil temperature is measured at 4 depths. Data have been continuously collected for over 6 months covering pre-monsoon and monsoon periods during the year 2006. The study first addresses the issue of getting the fluxes accurately. It is shown that water vapour measurements are the most crucial. A bias of 0.25% in relative humidity, which is well above the normal accuracy assumed the manufacturers but achievable in the field using a combination of laboratory calibration and field intercomparisons, results in about 20 W m(-2) change in the latent heat flux on the seasonal time scale. When seen on the seasonal time scale, the net longwave radiation is the largest energy loss term at the experimental site. The seasonal variation in the energy sink term is small compared to that in the energy source term.
Resumo:
The physical mechanism through which Ei-Nino and Southern Oscillation (ENSO) tends to produce deficient precipitation over Indian continent is investigated using both observations as well as a general circulation model. Both analysis of observations and atmospheric general circulation model (AGCM) study show that the planetary scale response associated with ENSO primarily influences the equatorial Indian Ocean region. Through this interaction it tends to favour the equatorial heat source, enhance precipitation over the equatorial Indian Ocean and indirectly cause a decrease in continental precipitation through induced subsidence. This situation is further complicated by the fact the regional tropospheric quasi biennial oscillation (QBO) has a bimodal structure over this region with large amplitude over the Indian continent. While the ENSO response has a quasi-four year periodicity and tends peak during beginning of the calendar year, the QBO mode tends to peak during northern summer. Thus, the QBO mode exerts a stronger influence on the interannual variability of the monsoon. The strength of the Indian monsoon in a given year depends on the combined effect of the ENSO and the QBO mode. Sines the two oscillations have disparate time scales, exact phase information of the two modes during northern summer is important in determining the Indian summer monsoon. The physical mechanism of the interannual variations of the Indian monsoon precipitation associated with ENSO presented here is similar to the physical process that cause intraseasonal 'active', 'break' oscillations of the monsoon.
Resumo:
The effect of a one-dimensional field (1) on the self-absorption characteristics and (2) when we have a finite numerical aperture for the objective lens that focuses the laser beam on the solid are considered here. Self-absorption, in particular its manifestation as an inner filter for the emitted signal, has been observed in luminescence experiments. Models for this effect exist and have been analyzed, but only in the absence of space charge. Using our previous results on minority carrier relaxation in the presence of a field, we obtain expressions incorporating inner filter effects. Focusing of a light beam on the sample, by an objective lens, results in a three-dimensional source and consequently a three-dimensional continuity equation to be solved for the minority carrier concentration. Assuming a one-dimensional electric field and employing Fourier-Bessel transforms, we recast the problem of carrier relaxation and solve the same via an identity that relates it to solutions obtained in the absence of focusing effects. The inner filter effect as well as focusing introduces new time scales in the problem of carrier relaxation. The interplay between the electric field and the parameters which characterize these effects and the consequent modulation of the intensity and time scales of carrier decay signals are analyzed and discussed.
Resumo:
A detailed study of the solvation dynamics of a charged coumarin dye molecule in gamma-cyclodextrin/water has been carried out by using two different theoretical approaches. The first approach is based on a multishell continuum model (MSCM). This model predicts the time scales of the dynamics rather well, provided an accurate description of the frequency-dependent dielectric function is supplied. The reason for this rather surprising agreement is 2-fold. First, there is a cancellation of errors, second, the two-zone model mimics the heterogeneous microenvironment surrounding the ion rather well. The second approach is based on the molecular hydrodynamics theory (MI-IT). In this molecular approach, the solvation dynamics has been studied by restricting the translational motion of the solvent molecules enclosed within the cavity. The results from the molecular theory are also in good agreement with the experimental results. Our study indicates that, in the present case, the restricted environment affects only the long time decay of the solvation time correlation function. The short time dynamics is still governed by the librational (and/or vibrational) modes present in bulk water.
Resumo:
Wavenumber-frequency spectral analysis of different atmospheric variables has been carried Out using 25 years of data. The area considered is the tropical belt 25 degrees S-25 degrees N. A combined FFT wavelet analysis method has been used for this purpose. Variables considered are outgoing long wave radiation (OLR), 850 hPa divergence, zonal and meridional winds at 850, 500 and 200 hPa levels, sea level pressure and 850 hPa geopotential height. It is shown that the spectra of different variables have some common properties, but each variable also has few features diffe:rent from the rest. While Kelvin mode is prominent in OLR, and zonal winds, it is not clearly observed in pressure and geopotential height fields; the latter two have a dominant wavenumber zero mode not seen in other variables except in meridional wind at 200 hPa and 850 hPa divergences. Different dominant modes in the tropics show significant variations on sub-seasonal time scales.
Resumo:
Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.
Resumo:
Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.
Resumo:
Molecular dynamics simulations of the orientational dynamics of water molecules confined inside narrow carbon nanorings reveal that reorientational relaxation is mediated by large amplitude angular jumps. The distribution of waiting time between jumps peaks at about 60 fs, and has a slowly decaying exponential tail with a timescale of about 440 fs. These time scales are much faster than the mean waiting time between jumps of the water molecules in bulk.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
This paper describes a detailed study of the structure of turbulence in boundary layers along mildly curved convex and concave surfaces. The surface curvature studied corresponds to δ/Rw = ± 0·01, δ being the boundary-layer thickness and Rw the radius of curvature of the wall, taken as positive for convex and negative for concave curvature. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion of turbulent energy away from the wall, reduces drastically the integral time scales and shifts the spectral distributions of turbulent energy and Reynolds shear stress towards high wavenumbers. Exactly opposite effects, though generally of a smaller magnitude, are produced by concave wall curvature. It is also found that curvature of either sign affects the v fluctuations more strongly than the u fluctuations and that curvature effects are more significant in the outer region of the boundary layer than in the region close to the wall. The data on the conditional correlations are used to study, in detail, the mechanism of turbulent transport in curved boundary layers. (Published Online April 12 2006)
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pump-probe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, beta of (similar to 2-9) x 10(-8) cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by it slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed. (C) 2009 American Institute of Physics.
Resumo:
Rapid granular flows are defined as flows in which the time scales for the particle interactions are small compared to the inverse of the strain rate, so that the particle interactions can be treated as instantaneous collisions. We first show, using Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.6 are rapid granular flows. Since collisions are instantaneous, a kinetic theory approach for the constitutive relations is most appropriate, and we present kinetic theory results for different microscopic models for particle interaction. The significant difference between granular flows and normal fluids is that energy is not conserved in a granular flow. The differences in the hydrodynamic modes caused by the non-conserved nature of energy are discussed. Going beyond the Boltzmann equation, the effect of correlations is studied using the ring kinetic approximation, and it is shown that the divergences in the viscometric coefficients, which are present for elastic fluids, are not present for granular flows because energy is not conserved. The hydrodynamic model is applied to the flow down an inclined plane. Since energy is not a conserved variable, the hydrodynamic fields in the bulk of a granular flow are obtained from the mass and momentum conservation equations alone. Energy becomes a relevant variable only in thin 'boundary layers' at the boundaries of the flow where there is a balance between the rates of conduction and dissipation. We show that such a hydrodynamic model can predict the salient features of a chute flow, including the flow initiation when the angle of inclination is increased above the 'friction angle', the striking lack of observable variation of the volume fraction with height, the observation of a steady flow only for certain restitution coefficients, and the density variations in the boundary layers.
Resumo:
The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.