148 resultados para Functionalized organotellurium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this work is the evaluation and analysis of the state of dispersion of functionalized multiwall carbon nanotubes (CNTs), within different morphologies formed, in a model LCST blend (poly[(alpha-methylstyrene)-co-(acrylonitrile)]/poly(methyl-methacryla te), P alpha MSAN/PMMA). Blend compositions that are expected to yield droplet-matrix (85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA, wt/wt) and co-continuous morphologies (60/40 P alpha MSAN/PMMA, wt/wt) upon phase separation have been combined with two types of CNTs; carboxylic acid functionalized (CNTCOOH) and polyethylene modified (CNTPE) up to 2 wt%. Thermally induced phase separation in the blends has been studied in-situ by rheology and dielectric (conductivity) spectroscopy in terms of morphological evolution and CNT percolation. The state of dispersion of CNTs has been evaluated by transmission electron microscopy. The experimental results indicate that the final blend morphology and the surface functionalization of CNT are the main factors that govern percolation. In presence of either of the CNTs, 60/40 P alpha MSAN/PMMA blends yield a droplet-matrix morphology rather than co-continuous and do not show any percolation. On the other hand, both 85/15 P alpha MSAN/PMMA and 15/85 P alpha MSAN/PMMA blends containing CNTPEs show percolation in the rheological and electrical properties. Interestingly, the conductivity spectroscopy measurements demonstrate that the 15/85 P alpha MSAN/PMMA blends with CNTPEs that show insulating properties at room temperature for the miscible blends reveal highly conducting properties in the phase separated blends (melt state) as a result of phase separation. By quenching this morphology, the conductivity can be retained in the blends even in the solid state. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the curing behavior of an encapsulation material is very important and critical in terms of understanding the properties of the material. Differential scanning calorimetry and rheometry are two important tools that have been utilized to study curing reactions in polymeric systems. The present work deals with the curing of a mixture of hydride terminated polydimethylsiloxane, allyl functionalized alumina nanoparticles and Karstedt's catalyst. The real time curing behavior of the typical system was monitored non-isothermally by differential scanning calorimetry and rheometry. The results obtained from the respective techniques reveal that there is a good correlation between these two techniques. A mechanism is proposed for the curing reaction of the polymer system based on the curing curves obtained by the above two studies. In addition, the swelling study and contact angle measurement of the two composites was performed to evaluate the extent of cross-linking and hydrophobicity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline functionalized with imidazole as strategically designed receptor group in its backbone was synthesized for copper binding. The synthesized polymer has been characterized using FTIR, NMR, and UV-Vis spectroscopic techniques. The addition of copper (II) to the polymer distinctly changes the properties such as crystallinity, molecular weight, aggregation, and electronic properties. XRD, DLS, SEM, and four-point probe techniques have been used for study of these changes. It is observed that the secondary ion generated as a result of copper coordination results in the doping of the polyaniline backbone, which enhances the conductivity by one order of magnitude. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 526-534, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermally stable and flexible composite has been synthesized by following a consecutive `two-step', solvent free route. Silicone polymer containing internal hydrides was used as a polymer matrix and mesoporous silica functionalized with allytrimethoxysiloxane was used as a filler material. In the second step, the composite preparation was carried out using the hydrosilylation reaction mediated by `Karastedt' platinum catalyst. The results of the studies suggest that the composites are thermally stable, hydrophobic and flexible and can be potentially used for encapsulating flexible electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated (corresponding to neutral pH) poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single strand DNAs (ssDNAs). The four ssDNA strands that are attached via an alkythiolate [-S(CH(2))(6)-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers are observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich (having more adenine and guanine) ssDNA strands than pyrimidine rich (thymine and cytosine) ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As the G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer than G3 dendrimer. This might indicate that DNA functionalized G3 dendrimer is more suitable to construct higher order nanostructures. The linker molecule was also found to undergo drastic conformational change during the simulation. During nanosecond long simulation some portion of the linker molecule was found to be lying nearly flat on the surface of the dendrimer molecule. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticles was found to be independent of base composition of ssDNAs and was observed to be around 19.5 angstrom and 22.4 angstrom when we used G3 and G4 PAMAM dendrimers as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecules apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticles and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) and carbon paste electrodes (CPE) were modified with imidazole functionalized polyaniline with the aim to develop a sensor for lead (II) in both acidic and basic aqueous solution. The electrodes were characterized by cyclic voltammetry and differential pulse adsorptive stripping voltammetry. The limit of detections obtained with glassy carbon electrode and carbon paste electrode are 20 ng mL(-1) and 2 ng mL(-1) of lead ion, respectively. An interference study was carried out with Cd(II), As(III), Hg(II) and Co(II) ions. Cd(II) ions interfere significantly (peak overlap) and As(III) has a depressing effect on the lead signal. The influence of pH was investigated indicating that bare and modified GCE and CPE show optimum response at pH 4.0 +/- 0.05.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that single walled carbon nanotubes (SWNTs) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate-protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge-transfer interactions with the SWNTs. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A)-mannose affinity constant to be 8.5 x 10(6) M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 mu M of a non-specific lectin peanut agglutinin, showing the high specificity of the Con A-mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNTs. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4739793]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge transport in sulfonated multi-wall carbon nanotube (sMWNT)-Nafion composite is reported. The scanning electron microscope images of the composite, at 1 and 10 wt % of sMWNT, show that the nanotubes are well dispersed in polymer matrix, with conductivity values of 0.005 and 3.2 S/cm, respectively; and the percolation threshold is nearly 0.42 wt. %. The exponent (∼0.25) of the temperature dependence of conductivity in both samples indicates Mott's variable range hopping (VRH) transport. The conductance in 1 wt. % sample increases by three orders of magnitude at high electric-fields, consistent with VRH model. The negative magnetoresistance in 10 wt. % sample is attributed to the forward interference scattering mechanism in VRH transport. The ac conductance in 1 wt. % sample is expressed by σ(ω)∝ωs, and the temperature dependence of s follows the correlated barrier hopping model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736568]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-Azidoacetophenones were converted into 2-aryl-1,3-oxazole-4-carbaldehydes through rearrangement of the carbon framework upon exposure to DMF/POCl3. The unprecedented rearrangement occurs via alkenyl azides and 2H-azirines. A mechanism for this unusual reaction was proposed and evidenced.