37 resultados para Frontiers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the efforts at MILE lab, IISc, to create a 100,000-word database each in Kannada and Tamil for the design and development of Online Handwritten Recognition. It has been collected from over 600 users in order to capture the variations in writing style. We describe features of the scripts and how the number of symbols were reduced to be able to effectively train the data for recognition. The list of words include all the characters, Kannada and Indo-Arabic numerals, punctuations and other symbols. A semi-automated tool for the annotation of data from stroke to word level is used. It segments each word into stroke groups and also acts as a validation mechanism for segmentation. The tool displays the stroke, stroke groups and aksharas of a word and hence can be used to study the various styles of writing, delayed strokes and for assigning quality tags to the words. The tool is currently being used for annotating Tamil and Kannada data. The output is stored in a standard XML format.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a novel heuristic approach to segment recognizable symbols from online Kannada word data and perform recognition of the entire word. Two different estimates of first derivative are extracted from the preprocessed stroke groups and used as features for classification. Estimate 2 proved better resulting in 88% accuracy, which is 3% more than that achieved with estimate 1. Classification is performed by statistical dynamic space warping (SDSW) classifier which uses X, Y co-ordinates and their first derivatives as features. Classifier is trained with data from 40 writers. 295 classes are handled covering Kannada aksharas, with Kannada numerals, Indo-Arabic numerals, punctuations and other special symbols like $ and #. Classification accuracies obtained are 88% at the akshara level and 80% at the word level, which shows the scope for further improvement in segmentation algorithm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod(2) and a heterotetrameric Res(2)Mod(2) complex. The Mod subunit in M-2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D-DNA looping have been proposed.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricated a reflectance based sensor which relies on the diffraction pattern generated from a bio-microarray where an underlying thin film structure enhances the diffracted intensity from molecular layers. The zero order diffraction represents the background signal and the higher orders represent the phase difference between the array elements and the background. By taking the differential ratio of the first and zero order diffraction signals we get a quantitative measure of molecular binding while simultaneously rejecting common mode fluctuations. We improved the signal-to-noise ratio by an order of magnitude with this ratiometric approach compared to conventional single channel detection. In addition, we use a lithography based approach for fabricating microarrays which results in spot sizes as small as 5 micron diameter unlike the 100 micron spots from inkjet printing and is therefore capable of a high degree of multiplexing. We will describe the real-time measurement of adsorption of charged polymers and bulk refractometry using this technique. The lack of moving parts for point scanning of the microarray and the differential ratiometric measurements using diffracted orders from the same probe beam allows us to make real-time measurements in spite of noise arising from thermal or mechanical fluctuations in the fluid sample above the sensor surface. Further, the lack of moving parts leads to considerable simplification in the readout hardware permitting the use of this technique in compact point of care sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional methods of detecting chiral molecules, such as optical rotation are not suitable for miniaturization, since, the magnitude of the rotation of polarization scales down linearly with the optical path length of the device. Since the origin of optical activity is due to difference of refractive indices between the two circularly polarized states of light, it is possible to detect chiral media by measuring the dependence of the angles of refraction on the polarization state of the incident light. This however is a weak effect and hence requires sensitive optical detection schemes, based on novel polarization modulation techniques. The device can be scaled down for applications involving small sample volumes. Fabrication details of a prototype microfluidic device are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of the low valent metallocene(II) sources Cp'Ti-2(eta(2)-Me3SiC2SiMe3) (Cp' = eta(5)-cyclopentadienyl, 1a or eta(5)-pentamethylcyclopentadienyl, 1b) with different carbodiimide substrates RN=C=NR' 2-R-R' (R = t-Bu; R' = Et; R = R' = i-Pr; t-Bu; SiMe3; 2,4,6-Me-C6H2 and 2,6-i-Pr-C6H3) was investigated to explore the frontiers of ring strained, unusual four-membered heterometallacycles 5-R. The product complexes show dismantlement, isomerization, or C-C coupling of the applied carbodiimide substrates, respectively, to form unusual mono-, di-, and tetranuclear titanium(III) complexes. A detailed theoretical study revealed that the formation of the unusual complexes can be attributed to the biradicaloid nature of the unusual four-membered heterometallacycles 5-R, which presents an intriguing situation of M-C bonding. The combined experimental and theoretical study highlights the delicate interplay of electronic and steric effects in the stabilization of strained four-membered heterometallacycles, accounting for the isolation of the obtained complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic Voltage and Frequency Scaling (DVFS) offers a huge potential for designing trade-offs involving energy, power, temperature and performance of computing systems. In this paper, we evaluate three different DVFS schemes - our enhancement of a Petri net performance model based DVFS method for sequential programs to stream programs, a simple profile based Linear Scaling method, and an existing hardware based DVFS method for multithreaded applications - using multithreaded stream applications, in a full system Chip Multiprocessor (CMP) simulator. From our evaluation, we find that the software based methods achieve significant Energy/Throughput2(ET−2) improvements. The hardware based scheme degrades performance heavily and suffers ET−2 loss. Our results indicate that the simple profile based scheme achieves the benefits of the complex Petri net based scheme for stream programs, and present a strong case for the need for independent voltage/frequency control for different cores of CMPs, which is lacking in most of the state-of-the-art CMPs. This is in contrast to the conclusions of a recent evaluation of per-core DVFS schemes for multithreaded applications for CMPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (i) low resource settings while achieving maximal lysis (ii) high throughput of target molecules to be detected (iii) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (iv) requirement of fast, accurate and yet scalable methods (v) multifunctionality toward process monitoring and (vi) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensory receptors determine the type and the quantity of information available for perception. Here, we quantified and characterized the information transferred by primary afferents in the rat whisker system using neural system identification. Quantification of ``how much'' information is conveyed by primary afferents, using the direct method (DM), a classical information theoretic tool, revealed that primary afferents transfer huge amounts of information (up to 529 bits/s). Information theoretic analysis of instantaneous spike-triggered kinematic stimulus features was used to gain functional insight on ``what'' is coded by primary afferents. Amongst the kinematic variables tested-position, velocity, and acceleration-primary afferent spikes encoded velocity best. The other two variables contributed to information transfer, but only if combined with velocity. We further revealed three additional characteristics that play a role in information transfer by primary afferents. Firstly, primary afferent spikes show preference for well separated multiple stimuli (i.e., well separated sets of combinations of the three instantaneous kinematic variables). Secondly, neurons are sensitive to short strips of the stimulus trajectory (up to 10 ms pre-spike time), and thirdly, they show spike patterns (precise doublet and triplet spiking). In order to deal with these complexities, we used a flexible probabilistic neuron model fitting mixtures of Gaussians to the spike triggered stimulus distributions, which quantitatively captured the contribution of the mentioned features and allowed us to achieve a full functional analysis of the total information rate indicated by the DM. We found that instantaneous position, velocity, and acceleration explained about 50% of the total information rate. Adding a 10 ms pre-spike interval of stimulus trajectory achieved 80-90%. The final 10-20% were found to be due to non-linear coding by spike bursts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of pathogens from infected biological samples through conventional process involves cell lysis and purification. The main objective of this work is to minimize the time and sample loss, as well as to increase the efficiency of detection of biomolecules. Electrical lysis of medical sample is performed in a closed microfluidic channel in a single integrated platform where the downstream analysis of the sample is possible. The device functions involve, in a sequence, flow of lysate from lysis chamber passed through a thermal denaturation counter where dsDNA is denatured to ssDNA, which is controlled by heater unit. A functionalized binding chamber of ssDNA is prepared by using ZnO nanorods as the matrix and functionalized with bifunctional carboxylic acid, 16-(2-pyridyldithiol) hexadecanoic acid (PDHA) which is further attached to a linker molecule 1-ethyl-3-(3-dimethylaminopropyl) (EDC). Linker moeity is then covalently bound to photoreactive protoporphyrin (PPP) molecule. The photolabile molecule protoporphyrin interacts with -NH2 labeled single stranded DNA (ssDNA) which thus acts as a probe to detect complimentary ssDNA from target organisms. Thereafter the bound DNA with protoporphyrin is exposed to an LED of particular wavelength for a definite period of time and DNA was eluted and analyzed. UV/Vis spectroscopic analysis at 260/280 nm wavelength confirms the purity and peak at 260 nm is reconfirmed for the elution of target DNA. Quantitative and qualitative data obtained from the current experiments show highly selective detection of biomolecule such as DNA which have large number of future applications in Point-of-Care devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carry out an extensive numerical study of the dynamics of spiral waves of electrical activation, in the presence of periodic deformation (PD) in two-dimensional simulation domains, in the biophysically realistic mathematical models of human ventricular tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNPO4 model). We first consider simulations in cable-type domains, in which we calculate the conduction velocity theta and the wavelength lambda of a plane wave; we show that PD leads to a periodic, spatial modulation of theta and a temporally periodic modulation of lambda; both these modulations depend on the amplitude and frequency of the PD. We then examine three types of initial conditions for both TP06 and TNNPO4 models and show that the imposition of PD leads to a rich variety of spatiotemporal patterns in the transmembrane potential including states with a single rotating spiral (RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state with multiple broken spirals, and a state SA in which all spirals are absorbed at the boundaries of our simulation domain. We find, for both TP06 and TNNPO4 models, that spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and the initial condition. We examine how these different types of spiral-wave states can be eliminated in the presence of PD by the application of low-amplitude pulses by square- and rectangular-mesh suppression techniques. We suggest specific experiments that can test the results of our simulations.