119 resultados para Frequent Sequential Patterns
Resumo:
A simple procedure for the state minimization of an incompletely specified sequential machine whose number of internal states is not very large is presented. It introduces the concept of a compatibility graph from which the set of maximal compatibles of the machine can be very conveniently derived. Primary and secondary implication trees associated with each maximal compatible are then constructed. The minimal state machine covering the incompletely specified machine is then obtained from these implication trees.
Resumo:
An annotated checklist of 284 species of amphibians of India accommodated under 50 genera and 14 families is provided. Synonyms, English names, type localities, deposition of type specimens, type specimen availability and distributional records in India and outside India are provided for all the species. Among the 284 species of amphibians from India, 132 are endemic to Western Ghats; 29 to Northeastern India; and 5 to Andaman Nicobar islands. Species discovery patterns from the various biogeographic zones in India are discussed in detail. Cumulative discovery pattern with special reference to the genera Fejervarya (17 species), Nyctibatrachus (16 species), Indirana (10 species), Micrixalus (11 species), Philautus (46 species) and Gegeneophis (10 species) are also discussed.
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
Resumo:
We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.
Resumo:
We study the problem of decentralized sequential change detection with conditionally independent observations. The sensors form a star topology with a central node called fusion center as the hub. The sensors transmit a simple function of their observations in an analog fashion over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. Simulations demonstrate that the proposed techniques have lower detection delays when compared with existing schemes. Moreover we demonstrate that the energy-constrained formulation enables better use of the total available energy than a power-constrained formulation.
Resumo:
A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.
Resumo:
A variety of N-alkyl-beta-aminodiselenides have been synthesized in high yield from sulfamidates under mild reaction conditions using potassium selenocyanate and benzyltriethylammonium tetrathiomolybdate ([BnNEt3](2)MoS4) in a sequential, one-pot, multistep reaction. The tolerance of multifarious protecting groups under the reaction conditions is discussed. The methodology was successfully extended to the synthesis of selenocystine,3,3'-dialkylselenocystine, and 3,3'-diphenylisoselenocystine and their direct incorporation into peptides.
Resumo:
The dipole patterns in the ferroelectric and antiferroelectric structures are drawn according to experimentally determined symmetry changes in the ferroelectrics and antiferroelectrics. For the ferroelectrics the dipoles of the unit cells for one domain are oriented in parallel and the directions of the polarisation in the adjacent domains are at definite angles to each other. It is assumed for the antiferroelectrics, that the superstructural unit cell is formed by the adjacent cells of the paraelectrical modification; the subcells having the antiparallel directions of the polarisation. It is these superstructural cells of the antiferroelectrics that are determined during the experimental investigations of the antiferroelectrics. The superstructural cells of the adjacent domains are different. In one case, the difference is that in the adjacent domains, the directions of the polarisation in the subcells form an angle (e.g., in PbZrO3). In other cases the superstructural cells have not only different directions of the polarisation in the subcells but different signs of the enantiomorphism (e.g., NH4H2PO4). In the third case, the only difference is that the superstructural unit cells in the adjacent domains are turned by an angle to each other round the direction of the subcell polarisation [e.g., (NH4)2H3IO6], etc.
Resumo:
The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.
Resumo:
One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.
Resumo:
The movement and habitat utilization patterns were studied in an Asian elephant population during 1981-83 within a 1130 km2 area in southern India (110 30' N to 120 0' N and 760 50' E to 770 15' E). The study area encompasses a diversity of vegetation types from dry thorn forest (250-400 m) through deciduous forest (400-1400 m) to stunted evergreen shola forest and grassland (1400-1800 m). Home range sizes of some identified elephants were between 105 and 320 km2. Based on the dry season distribution, five different elephant clans, each consisting of between 50 and 200 individuals and having overlapping home ranges, could be defined within the study area. Seaso- nal habitat preferences were related to the availability of water and the palatability of food plants. During the dry months (January-April) elephants congregated at high densities of up to five individuals kM-2 in river valleys where browse plants had a much higher protein content than the coarse tall grasses on hill slopes. With the onset of rains of the first wet season (May- August) they dispersed over a wider area at lower densities, largely into the tall grass forests, to feed on the fresh grasses, which then had a high protein value. During the second wet season (September-December), when the tall grasses became fibrous, they moved into lower elevation short grass open forests. The normal movement pattern could be upset during years of adverse environmental con- ditions. However, the movement pattern of elephants in this region has not basically changed for over a century, as inferred from descriptions recorded during the nineteenth century.
Resumo:
Joint decoding of multiple speech patterns so as to improve speech recognition performance is important, especially in the presence of noise. In this paper, we propose a Multi-Pattern Viterbi algorithm (MPVA) to jointly decode and recognize multiple speech patterns for automatic speech recognition (ASR). The MPVA is a generalization of the Viterbi Algorithm to jointly decode multiple patterns given a Hidden Markov Model (HMM). Unlike the previously proposed two stage Constrained Multi-Pattern Viterbi Algorithm (CMPVA),the MPVA is a single stage algorithm. MPVA has the advantage that it cart be extended to connected word recognition (CWR) and continuous speech recognition (CSR) problems. MPVA is shown to provide better speech recognition performance than the earlier techniques: using only two repetitions of noisy speech patterns (-5 dB SNR, 10% burst noise), the word error rate using MPVA decreased by 28.5%, when compared to using individual decoding. (C) 2010 Elsevier B.V. All rights reserved.