74 resultados para Frederick II, King of Prussia, 1712-1786.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.
Resumo:
Ni(II)complexes(1-5)ofdi2pyridylketoneN(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 center dot 2H(2)O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL, - 0.5(H,0)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P-21/n. Complexes 2. 3 and 4 are observed to show a 1:1:1 ratio of metal: thioseicarbazone:gegenion, with the general formula NiLX center dot yH(2)O [X = NCS. Y = 2 for 2; X = Cl, Y = 3 for 3 and X = N-3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2: 1. with the formula [Ni,L,(SO4)1 - 4H(2)O (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ni(II) complexes (1-5) of di-2-pyridyl ketone N(4)-phenylthiosemicarbazone (HL) have been synthesized and spectrochemically characterized. Elemental analyses revealed a NiL2 center dot 2H(2)O stoichiometry for compound 1. However, the single crystals isolated revealed a composition NiL, - 0.5(H,0)0.5(DMF). The compound crystallizes into a monoclinic lattice with the space group P-21/n. Complexes 2. 3 and 4 are observed to show a 1:1:1 ratio of metal: thioseicarbazone:gegenion, with the general formula NiLX center dot yH(2)O [X = NCS. Y = 2 for 2; X = Cl, Y = 3 for 3 and X = N-3, y = 4.5 for 4]. Compound 5 is a dimer with a metal:thiosemicarbazone:gegenion ratio of 2:2: 1. with the formula [Ni,L,(SO4)1 - 4H(2)O (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Copper(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula Cu(BPBI)2X2, nH2O [X= Cl-, Br-, NO3 or OAc- (n = O) and X = NO3- or 1 2SO42-(n = 2H2O)] have been prepared. The complexes are found to be nonelectrolytes in nitrobenzene. Conductivity in nonaqueous media, magnetic susceptibilities and i.r. and electronic spectra of the complexes are reported. A tetragonally distorted octahedral structure has been suggested for these complexes.
Resumo:
Reactions of fourteen nucleophiles with the pseudo-acid chloride of o-benzoylbenzoic acid in two solvents have been studied. The nucleophiles that react primarily at the tetrahedral carbon atom to give pseudo derivatives, are weaker than those that react at the carbonyl carbon atom causing opening of the lactone ring. An explanation for this phenomenon is advanced.
Resumo:
A mechanism for the isomerisation of ethyl 1-ethoxycarbonyl-2-oxocyclopentylacetate (I) into a cyclohexane β-keto-ester as proceeding through an intermediate bicyclic /gb-diketone (VII) has been considered as an alternative mechanism to one earlier suggested.1 The determination of the structure of the isomerised β-keto-ester as 2, 3-diethoxycarbonylcyclohexanone (V) has provided support for the earlier mechanism.
Resumo:
Nickel(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula [Ni(BPBI)2X2](X=Cl-, Br-, NCS- or NO3-) have been prepared and their magnetic moments, i.r. and electronic spectra studied. [Ni(BPBI)2Cl2] has a pseudotetrahedral structure while [Ni(BPBI)2 Br2] exists as square planar and speudotetrahedral isomers. [Ni(BPBI)2I2] and [NI(BPBI)2(NCS)2] have square planar stereochemistry. The nitrato complex [Ni(BPBI)2(NO)3)2] exists in two different octahedral modifications in the solid state.
Resumo:
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.
Resumo:
Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).
Resumo:
Complexes of cobalt(II), nickel(II) and copper(II) with novel bidentate bibenzimidazoles, [M(L-L)Cl2], where L-L are methylenebis(1, 1prime-benzimidazole), methylenebis(2, 2prime-benzimidazole) and dimethylenebis(2, 2prime-benzimidazole) are described and characterized by different physical measurements. The four coordinate complexes have distorted tetrahedral or square coplanar structures. The bridging entity between the two donor groups apparently influences the ligand field strength and the ligands occupy a higher position than that of benzimidazole in the spectrochemical series.
Resumo:
The C-nitrosation of bivalent quadridentate β-imino ketone complexes of nickel(II), copper(II), and palladium(II), with nitrosating reagents has been investigated. The chemical analysis and spectroscopic results reveal that one of the α-CH groups of the coordinated lignad undergoes selective nitrosation forming mono(hydroxyimino) derivative. The hydroxyimino group introduced coordinates through either N- or O- atom to metal(II) by dislodging the carbonyl group already coordinated. This gives rise to two linkage isomers, one with N-bonded and the other with O-bonded hydroxyimino group in the case of nickel(II) (except for 1d) and palladium(II), and a single isomer with O-bonded hydroxyimino group in copper(II) complexes. The isomers obtained from 1b and 1i have been separated by column chromatography. In chloroform each of the isomers of nickel(II) isomerizes to give an equilibrium mixture of two isomers, but not those of copper(II) and palladium(II).