75 resultados para Forest regeneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While plants of a single species emit a diversity of volatile organic compounds (VOCs) to attract or repel interacting organisms, these specific messages may be lost in the midst of the hundreds of VOCs produced by sympatric plants of different species, many of which may have no signal content. Receivers must be able to reduce the babel or noise in these VOCs in order to correctly identify the message. For chemical ecologists faced with vast amounts of data on volatile signatures of plants in different ecological contexts, it is imperative to employ accurate methods of classifying messages, so that suitable bioassays may then be designed to understand message content. We demonstrate the utility of `Random Forests' (RF), a machine-learning algorithm, for the task of classifying volatile signatures and choosing the minimum set of volatiles for accurate discrimination, using datam from sympatric Ficus species as a case study. We demonstrate the advantages of RF over conventional classification methods such as principal component analysis (PCA), as well as data-mining algorithms such as support vector machines (SVM), diagonal linear discriminant analysis (DLDA) and k-nearest neighbour (KNN) analysis. We show why a tree-building method such as RF, which is increasingly being used by the bioinformatics, food technology and medical community, is particularly advantageous for the study of plant communication using volatiles, dealing, as it must, with abundant noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that thermally stimulated photocurrent measurements provide a simple and effective method of determining the activation energy of thermal regeneration rate of EL2 from the metastable state to the normal state in undoped semi‐insulating GaAs. The thermal regeneration rate r is found to be 2.5×108 exp(−0.26 eV/kT) s−1.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callus cultures were established from hypocotyls and cotyledons derived from young seedlings of Eucalyptus citriodora. Successful plantlet production from cotyledonary callus was achieved within 6 weeks on Murashige and Skoog's basal medium supplemented with zeatin (1 mg/l) and indoleacetic acid (0.2 mg/l). Leaf and shoot callus obtained from one-year-old plants did not differentiate. Results reported contribute to defining optimal conditions for callus growth and plantlet formation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for mass production of rosewood (Dalbergia latifolia Roxb.) trees through leaf disc organogenesis was developed and standardized. Compact callus was initiated from mature leaf discs on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg 1?1 2,4-dichlorophenoxy acetic acid (2,4-D), 5.0 mg 1?1 ?-naphthaleneacetic acid (NAA), 1.0 mg 1?1 6-benzylaminopurine (BAP) and 10% coconut water (CW). High frequency (15�20 shoots/g callus) regeneration of shoot bud differentiation was obtained on MS (3/4 reduced major elements) or Woody Plant Medium (WPM) or modified Woody Plant Medium (mWPM) supplemented with BAP (5.0 mg 1?1) and NAA (0.5 mg 1?1). Leaf abscission and shoot tip necrosis was controlled using mWPM. About 90% of the excised shoots were rooted in the mWPM supplemented with 2.0 mg 1?1 ?-indolebutyric acid (IBA) and 1.0 mg 1?1 caffeic acid. The in vitro-raised rooted plantlets were hardened for successful transplantation to soil. The transplanted plants were exposed to various humidity conditions and 80% transplant success was achieved. The in vitro-raised leaf-regenerated plants grew normally and vigorously in soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to large scale afforestation programs and forest conservation legislations, India's total forest area seems to have stabilized or even increased. In spite of such efforts, forest fragmentation and degradation continues, with forests being subject to increased pressure due to anthropogenic factors. Such fragmentation and degradation is leading to the forest cover to change from very dense to moderately dense and open forest and 253 km(2) of very dense forest has been converted to moderately dense forest, open forest, scrub and non-forest (during 2005-2007). Similarly, there has been a degradation of 4,120 km(2) of moderately dense forest to open forest, scrub and non-forest resulting in a net loss of 936 km(2) of moderately dense forest. Additionally, 4,335 km(2) of open forest have degraded to scrub and non-forest. Coupled with pressure due to anthropogenic factors, climate change is likely to be an added stress on forests. Forest sector programs and policies are major factors that determine the status of forests and potentially resilience to projected impacts of climate change. An attempt is made to review the forest policies and programs and their implications for the status of forests and for vulnerability of forests to projected climate change. The study concludes that forest conservation and development policies and programs need to be oriented to incorporate climate change impacts, vulnerability and adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m(2)/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (-5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (-2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS-a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews integrated economic and ecological models that address impacts and adaptation to climate change in the forest sector. Early economic model studies considered forests as one out of many possible impacts of climate change, while ecological model studies tended to limit the economic impacts to fixed price-assumptions. More recent studies include broader representations of both systems, but there are still few studies which can be regarded fully integrated. Full integration of ecological and economic models is needed to address forest management under climate change appropriately. The conclusion so far is that there are vast uncertainties about how climate change affects forests. This is partly due to the limited knowledge about the global implications of the social and economical adaptation to the effects of climate change on forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 Flowering and fruiting phenologies of a tropical dry forest in Mudumalai, southern India, were studied between April 1988 and August 1990. Two sites, a wetter site I receiving 1100mm and a drier site II receiving 600mm of rainfall annually, are compared. A total of 286 trees from 38 species at site I and 167 trees from 27 species at site II was marked for phenological observations. There were 11 species common to the two sites. Several hypotheses relating to the evolution of reproductive phenology are tested. 2 Frequency of species flowering attained a peak at site I during the dry season but at site II, where soil moisture may be limiting during the dry months, the peak was during the wet season. At both sites a majority of species flushed leaves and flowered simultaneously. Among various guilds, the bird-pollinated guild showed distinct dry season flowering, which may be related to better advertisement of large flowers to pollinators during the leafless dry phase. The wind-pollinated guild flowered mainly during the wet season, when wind speeds are highest and favourable for pollen transport. The insect-pollinated guild showed no seasonality in flowering in site I but a wet season flowering in site II. 3 Fruiting frequency attained a peak in site I during the late wet season extending into the early dry season; a time-lag correlation showed that fruiting followed rainfall with a lag of about two months. Site II showed a similar fruiting pattern but this was not statistically significant. The dispersal guilds (animal, wind, and explosive passively-dispersed) did not show any clear seasonality in fruiting, except for the animal-dispersed guild which showed wet season fruiting in site I. 4 Hurlbert's overlap index was also calculated in order to look at synchrony in flowering and fruiting irrespective of climatic (dry and wet month) seasonality. In general, overlap in flowering and fruiting guilds was high because of seasonal aggregation. Among the exceptions, at site II the wind-pollinated flowering guild did not show significant overlap between species although flowering aggregated in the wet season. This could be due to the need to avoid heterospecific pollen transfer. 5 Rarer species tended to flower earlier in the dry season and this again could be an adaptation to avoid the risk of heterospecific pollen transfer or competition for pollinators. The more abundant species flowered mainly during the wet season. Species which flower earlier have larger flowers and, having invested more energy in flowers, also have shorter flower to fruit durations.