64 resultados para Food--Cooling
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
Preparation of semisolid slurry using a cooling slope is increasingly becoming popular, primarily because of the simplicity in design and ease control of the process. In this process, liquid alloy is poured down an inclined surface which is cooled from underneath. The cooling enables partial solidification and the incline provides the necessary shear for producing semisolid slurry. However, the final microstructure of the ingot depends on several process parameters such as cooling rate, incline angle of the cooling slope, length of the slope and initial melt superheat. In this work, a CFD model using volume of fluid (VOF) method for simulating flow along the cooling slope was presented. Equations for conservation of mass, momentum, energy and species were solved to predict hydrodynamic and thermal behavior, in addition to predicting solid fraction distribution and macrosegregation. Solidification was modeled using an enthalpy approach and a volume averaged technique for the different phases. The mushy region was modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed/fragmented grains. The alloy chosen for the study was aluminum alloy A356, for which adequate experimental data were available in the literature. The effects of two key process parameters, namely the slope angle and the pouring temperature, on temperature distribution, velocity distribution and macrosegregation were also studied.
Resumo:
A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
The temperature variation in the insulation around an electronic component, mounted on a horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed. The effect of mixed convection and two different types of insulation are considered. The mass, momentum and energy conservation equations in the fluid and conduction equation in the insulation are solved using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation within the insulation becomes important when the thermal conductivity of the insulation is less than ten times the thermal conductivity of the cooling medium.
Resumo:
A mixed boundary-valued problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speed. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming one layer of the fluid to be of finite extent and the other of infinite extent. The main problem is solved through a three-part Wiener - Hopf problem of a special type, and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
Hydraircooling is a technique used for precooling food products. In this technique chilled water is sprayed over the food products while cold unsaturated air is blown over them. Hydraircooling combines the advantages of both air- and hydrocooling. The present study is concerned with the analysis of bulk hydraircooling as it occurs in a package filled with several layers of spherical food products with chilled water sprayed from the top and cold unsaturated air blown from the bottom. A mathematical model is developed to describe the hydrodynamics and simultaneous heat and mass transfer occurring inside the package. The non-dimensional governing equations are solved using the finite difference numerical methods. The results are presented in the form of time-temperature charts. A correlation is obtained to calculate the process time in terms of the process parameters.
Resumo:
In this paper we report the measurements of specific heats of five glass formers as they are cooled through the glass-transition region. The measurements are compared with other specific-heat measurements such as adiabatic-calorimetry and ac-calorimetry measurements. The data are then analyzed using a model of enthalpy relaxation and nonequilibrium cooling, which can track the nonequilibrium relaxation time tau(S). The relevant parameters that describe tau(S) are obtained, allowing us to compare the enthalpy-relaxation times obtained from this method with other methods. We display the clear connection of the unrelaxed enthalpy with the nonequilibrium relaxation time and also show the role played by the delayed heat release from the unrelaxed enthalpy in the glass-transition region. We have also made certain definite observations regarding the equilibrium configurational specific heat and the Vogel-Fulcher law, which describes tau(S).
Resumo:
A study of transpiration cooling of blunt bodies such as a hemicylinder is made by solving Navier-Stokes equations. An upwind, implicit time-marching code is developed for this purpose. The study is conducted for both perfect-gas and real-gas (chemical equilibrium) flows. Investigations are carried out for a special wall condition that is referred to as no heat flow into the wall condition. The effects of air injection on wall temperature are analyzed. Analyses are carried out for Mach numbers ranging between 6-10 and Reynolds numbers ranging between 10(6)-10(7). Studies are made for spatially constant as well as spatially varying mass injection rate distributions, White cold air injection reduces the wall temperature substantially, transpiration cooling is relatively less effective when the gas is in chemical equilibrium.
Resumo:
Utilising Jones' method associated with the Wiener-Hopf technique, explicit solutions are obtained for the temperature distributions on the surface of a cylindrical rod without an insulated core as well as that inside a cylindrical rod with an insulated inner core when the rod, in either of the two cases, is allowed to enter, with a uniform speed, into two different layers of fluid with different cooling abilities. Simple expressions are derived for the values of the sputtering temperatures of the rod at the points of entry into the respective layers, assuming the upper layer of the fluid to be of finite depth and the lower of infinite extent. Both the problems are solved through a three-part Wiener-Hopf problem of special type and the numerical results under certain special circumstances are obtained and presented in tabular forms.
Resumo:
Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 degrees C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 degrees C and cooling loads from 3 to 4.9W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)
Resumo:
This paper deals with the development of a new model for the cooling process on the runout table of hot strip mills, The suitability of different numerical methods for the solution of the proposed model equation from the point of view of accuracy and computation time are studied, Parallel solutions for the model equation are proposed.