113 resultados para Folding coadjuvant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of N-terminal diproline segments in nucleating helical folding in designed peptides has been studied in two model sequences Piv-Pro-Pro-Aib-Leu-Aib-Phe-OMe (1) and Boc-Aib-Pro-Pro-Aib-Val-Ala-Phe-OMe (2). The structure of 1 in crystals, determined by X-ray diffraction, reveals a helical (RR) conformation for the segment residues 2 to 5, stabilized by one 4 -> 1 hydrogen bond and two 5 -> 1 interactions. The N-terminus residue, Pro(1) adopts a polyproline II (P-II) conformation. NMR studies in three different solvent systems support a conformation similar to that observed in crystals. In the apolar solvent CDCl3, NOE data favor the population of both completely helical and partially unfolded structures. In the former, the Pro-Pro segment adopts an alpha(R)-alpha(R) conformation, whereas in the latter, a P-II-alpha(R) structure is established. The conformational equilibrium shifts in favor of the P-II-alpha(R) structure in solvents like methanol and DMSO. A significant population of the Pro(1)- Pro(2) cis conformer is also observed. The NMR results are consistent with the population of at least three conformational states about Pro- Pro segment: trans alpha(R)-alpha(R), trans P-II-alpha(R) and cis P-II-alpha(R). Of these, the two trans conformers are in rapid dynamic exchange on the NMR time scale, whereas the interconversion between cis and trans form is slow. Similar results are obtained with peptide 2. Analysis of 462 diproline segments in protein crystal structures reveals 25 examples of the alpha(R)-alpha(R) conformation followed by a helix. Modeling and energy minimization studies suggest that both P-II-alpha(R) and alpha(R)-alpha(R) conformations have very similar energies in the model hexapeptide 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic ionenes that bear electron-rich 1,5-dialkoxynaphthalene (DAN) units within the alkylene segment were allowed to interact with different types of electron-deficient, acceptor-containing molecules in an effort to realize intercalation-induced folding of the ionenes; the collapse of the chains was expected to occur in such a way that the donor and acceptor units become arranged in an alternating fashion. Several acceptor-bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. This yielded acceptor molecules with different water solubility and allowed the examination of solvophobic effects in the folding process. UV/Vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN-ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge-transfer (CT) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger CT complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger pi-stacking tendency of the former. AFM studies of drop-cast films of different ionene-acceptor combinations revealed that compact folded structures are formed most effectively under conditions in which the strongest CT complex is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome c, a "mobile electron carrier" of the mitochondrial respiratory chain, also occurs in detectable amounts in the cytosol, and can receive electrons from cytochromes present in endoplasmic reticulum and plasma membranes as well as from superoxide and ascorbate. The pigment was found to dissociate from mitochondrial membranes in liver and kidney when rats were subjected to heat exposure and starvation, respectively. Treating cytochrome c with hydroxylamine gives a partially deaminated product with altered redox properties; decreased stimulation of respiration by deficient mitochondria, increased reduction by superoxide, and complete loss of reducibility by plasma membranes. Mitochondria isolated from brown adipose tissue of cold-exposed rats are found to be sub-saturated with cytochrome c. The ability of cytochrome c to reactivate reduced ribonuclease is now reinterpreted as a molecular chaperone role for the hemoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG(3)) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of folding of the small protein barstar in the pre-transition zone at pH 7, 25 degrees C has been characterized using rapid mixing techniques. Earlier studies had established the validity of the three-state U-S reversible arrow U-F reversible arrow N mechanism for folding and unfolding in the presence of guanidine hydrochloride (GdnHCl) at concentrations greater than 2.0 M, where U-S and U-F are the slow-refolding and fast-refolding unfolded forms, respectively, and N is the fully folded form. It is now shown that early intermediates, I-S1 and I-S2 as well as a late native-like intermediate, I-N, are present on the folding pathways of U-S, and an early intermediate I-F1 on the folding pathway of U-F, when bars tar is refolded in concentrations of GdnHCl below 2.0 M. The rates of formation and disappearance of I-N, and the rates of formation of N at three different concentrations of GdnHCl in the pre-transition zone have been measured. The data indicate that in 1.5 M GdnHCl, I-N is not fully populated on the U-S --> I-S1 --> I-N --> N pathway because the rate of its formation is so slow that the U-S reversible arrow U-F reversible arrow N pathway can effectively compete with that pathway. In 1.0 M GdnHCl, the U-S --> I-S1 --> I-N transition is so fast that I-N is fully populated. In 0.6 M GdnHCl, I-N appears not to be fully populated because an alternative folding pathway, U-S --> I-S2 --> N, becomes available for the folding of U-S, in addition to the U-S --> I-S1 --> I-N --> N pathway Measurement of the binding of the hydrophobic dye 1-anilino-8-naphthalenesulphonate (ANS) during folding indicates that ANS binds to two distinct intermediates, I-M1 and I-M2, that form within 2 ms on the U-S --> I-M1 --> I-S1 --> I-N --> N and U-S --> I-M2 --> I-S2 --> N pathways. There is no evidence for the accumulation of intermediates that can bind ANS on the folding pathway of U-F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state, Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude, The evolutionary implications of our findings are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution of fluorescence resonance energy transfer (FRET) efficiency between the two ends of a Lennard-Jones polymer chain both at equilibrium and during folding and unfolding has been calculated, for the first time, by Brownian dynamics simulations. The distribution of FRET efficiency becomes bimodal during folding of the extended state subsequent to a temperature quench, with the width of the distribution for the extended state broader than that for the folded state. The reverse process of unfolding subsequent to a upward temperature jump shows different characteristics. The distributions show significant viscosity dependence which can be tested against experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting with the Levinthal paradox, a brief introduction to the protein folding problem is presented. The existing theories of protein folding, including the folding funnel scenario, are discussed. After briefly discussing different simulation studies of model proteins, we discuss our recent work on the dynamics of folding of the model HP-36 (the chicken villin headpiece) protein by using a simplified hydropathy scale. Special attention has been paid to the statics and dynamics of contact formation among the hydrophobic residues. The results obtained from this simple model appear to be surprisingly similar to several features observed in the folding of real proteins. The account concludes with a discussion of future problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During meiosis, long-range interaction between homologous chromosomes is thought to be crucial for homology recognition, exchange of DNA strands, and production of normal haploid gametes. However, little is known about the identity of the proteins involved and the actual molecular mechanism(s) by which chromosomes recognize and recombine with their appropriate homologous partners. Single-molecule analyses have the potential to provide insights into our understanding of this fascinating and long-standing question. Using atomic force microscopy and magnetic tweezers techniques, we discovered that Hop1 protein, a key structural component of Saccharomyces cerevisiae synaptonemal complex, exhibits the ability to bridge noncontiguous DNA segments into intramolecular stem-loop structures in which the DNA segments appear to be fully synapsed within the filamentous protein stems. Additional evidence suggests that Hop1 folds DNA into rigid protein DNA filaments and higher-order nucleoprotein structures. Importantly, Hop1 promotes robust intra- and intermolecular synapsis between double-stranded DNA molecules, suggesting that juxtaposition of DNA sequences may assist in strand exchange between homologues by recombination-associated proteins. Finally, the evidence from ensemble experiments is consistent with the notion that Hop1 causes rigidification of DNA molecules. These results provide the first direct evidence for long-range protein-mediated DNA DNA synapsis, independent of crossover recombination, which is presumed to occur during meiotic recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal peptide plays a key role in targeting and membrane insertion of secretory and membrane proteins in both prokaryotes and eukaryotes. In E. coli, recombinant proteins can be targeted to the periplasmic space by fusing naturally occurring signal sequences to their N-terminus. The model protein thioredoxin was fused at its N-terminus with malE and pelB signal sequences. While WT and the pelB fusion are soluble when expressed, the malE fusion was targeted to inclusion bodies and was refolded in vitro to yield a monomeric product with identical secondary structure to WT thioredoxin. The purified recombinant proteins were studied with respect to their thermodynamic stability, aggregation propensity and activity, and compared with wild type thioredoxin, without a signal sequence. The presence of signal sequences leads to thermodynamic destabilization, reduces the activity and increases the aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, signal sequences can modulate protein stability and aggregation in a sequence dependent manner.