22 resultados para Figures of speech in literature
Resumo:
Functions are important in designing. However, several issues hinder progress with the understanding and usage of functions: lack of a clear and overarching definition of function, lack of overall justifications for the inevitability of the multiple views of function, and scarcity of systematic attempts to relate these views with one another. To help resolve these, the objectives of this research are to propose a common definition of function that underlies the multiple views in literature and to identify and validate the views of function that are logically justified to be present in designing. Function is defined as a change intended by designers between two scenarios: before and after the introduction of the design. A framework is proposed that comprises the above definition of function and an empirically validated model of designing, extended generate, evaluate, modify, and select of state-change, and an action, part, phenomenon, input, organ, and effect model of causality (Known as GEMS of SAPPhIRE), comprising the views of activity, outcome, requirement-solution-information, and system-environment. The framework is used to identify the logically possible views of function in the context of designing and is validated by comparing these with the views of function in the literature. Describing the different views of function using the proposed framework should enable comparisons and determine relationships among the various views, leading to better understanding and usage of functions in designing.
Resumo:
A molecular dynamics (MD) investigation of LiCl in water, methanol, and ethylene glycol (EG) at 298 K is reported. Several; structural and dynamical properties of the ions as well as the solvent such as self-diffusivity, radial distribution functions, void and neck distributions, velocity autocorrelation functions, and mean residence times of solvent in the first solvation shell have been computed. The results show that the reciprocal relationship between the self-diffusivity of the ions and the viscosity is valid in almost all solvents with the exception of water. From an analysis of radial distribution functions and coordination numbers the nature of hydrogen bonding within the solvent and its influence on the void and neck distribution becomes evident. It is seen that the solvent solvent interaction is important in EG while solute solvent interactions dominate in water and methanol. From Voronoi tessellation, it is seen that the voids and necks within methanol are larger as compared to those within water or EG. On the basis of the void and neck distributions obtained from MD simulations and literature experimental data of limiting ion conductivity for various ions of different sizes we show that there is a relation between the void and neck radius on e one hand and dependence of conductivity on the ionic radius on the other. It is shown that the presence of large diameter voids and necks in methanol is responsible for maximum in limiting ion conductivity (lambda(0)) of TMA(+), while in water in EG, the maximum is seen for Rb+. In the case of monovalent anions, maximum in lambda(0) as a function ionic radius is seen for Br- in water EG but for the larger ClO4- ion in methanol. The relation between the void and neck distribution and the variation in lambda(0) with ionic radius arises via the Levitation effect which is discussed. These studies show the importance of the solvent structure and the associated void structure.
Resumo:
This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America
Resumo:
Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf 1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf 1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. 2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the evolution of crystallographic texture in three of the most important high strength aluminium alloys, viz., AA2219, AA7075 and AFNOR7020 in the cold rolled and artificially aged condition. Bulk texture results were obtained by plotting pole figures from X-ray diffraction results followed by Orientation Distribution Function (ODF) analysis and micro-textures were measured using EBSD. The results indicate that the deformation texture components Cu, Bs and S, which were also present in the starting materials, strengthen with increase in amount of deformation. On the other hand, recrystallization texture components Goss and Cube weaken. The Bs component is stronger in the deformation texture. This is attributed to the shear banding. In-service applications indicate that the as-processed AFNOR7020 alloy fails more frequently compared to the other high strength Al alloys used in the aerospace industry. Detailed study of deformation texture revealed that strong Brass (Bs) component could be associated to shear banding, which in turn could explain the frequent failures in AFNOR7020 alloy. The alloying elements in this alloy that could possibly influence the stacking fault energy of the material could be accounted for the strong Bs component in the texture.
Resumo:
We propose apractical, feature-level and score-level fusion approach by combining acoustic and estimated articulatory information for both text independent and text dependent speaker verification. From a practical point of view, we study how to improve speaker verification performance by combining dynamic articulatory information with the conventional acoustic features. On text independent speaker verification, we find that concatenating articulatory features obtained from measured speech production data with conventional Mel-frequency cepstral coefficients (MFCCs) improves the performance dramatically. However, since directly measuring articulatory data is not feasible in many real world applications, we also experiment with estimated articulatory features obtained through acoustic-to-articulatory inversion. We explore both feature level and score level fusion methods and find that the overall system performance is significantly enhanced even with estimated articulatory features. Such a performance boost could be due to the inter-speaker variation information embedded in the estimated articulatory features. Since the dynamics of articulation contain important information, we included inverted articulatory trajectories in text dependent speaker verification. We demonstrate that the articulatory constraints introduced by inverted articulatory features help to reject wrong password trials and improve the performance after score level fusion. We evaluate the proposed methods on the X-ray Microbeam database and the RSR 2015 database, respectively, for the aforementioned two tasks. Experimental results show that we achieve more than 15% relative equal error rate reduction for both speaker verification tasks. (C) 2015 Elsevier Ltd. All rights reserved.