41 resultados para Fatal attacks
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts. The Lanchester attrition model is used to develop the dynamical equations governing the variation in force strength. Three different allocation schemes - Time-Zero-Allocation (TZA), Allocate-Assess-Reallocate (AAR), and Continuous Constant Allocation (CCA) - are considered and the optimal solutions are obtained in each case. Numerical examples are given to support the analytical results.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
This paper develops a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary from n different fronts. The problem of optimally partitioning the defending forces against the attacking forces is addressed. The Lanchester square law model is used to develop the dynamical equations governing the variation in force strength. Two different allocation schemes-Time-ZeroAllocation (TZA) and Continuous Constant Allocation (CCA) are considered and the optimal solutions for both are obtained analytically. These results generalize other results available in the literature. Numerical examples are given to support the analytical results.
Resumo:
An indole oxygenase from the leaves of Jasminum grandiflorum was isolated and purified to near homogeneity. The purified enzyme system catalyses the conversion of indole to anthranilic acid. It is optimally active at pH 4.8 and at 30°C. Apart from indole, the oxygenase also attacks 5-hydroxy indole and 5-bromoindole. Both sulfhydryl reagents and sulfhydryl compounds inhibited the enzyme activity. Copper specific metal chelators such as salicylaldoxime, diethyl dithiocarbamate and neocuproine, inhibited the enzyme activity drastically. Inhibition caused by atebrine, could be reversed by FAD. Dialysis resulted in complete loss of enzyme activity. Inactive enzyme could be reactivated only by the addition of both FAD and Cu2+, suggesting that indole oxygenase is a cuproflavoprotein.
Resumo:
The hydrolysis reactions of organometallic ruthenium(II) piano-stool complexes of the type Ru-II(eta(6)-cymene)(L)Cl](0/+) (1-5, where L = kappa(1)- or kappa(2)-1,1-bis(diphenylphosphino)methane,1,1bis-(diphenylphosphino)methane oxide, kappa(1)-mercaptobenzothiazole) have been studied using density functional theory at the B3LYP level. In addition to considering a syn attack in an associative fashion, where the nucleophile approaches from the same side as the leaving group, we have explored alternative paths such as an anti attack in an associative manner, where the nucleophile attacks from the opposite side of the leaving group. During the anti attack, an intermediate is formed and there is a coordination mode change of the arene ring from eta(6) to eta(2) along with its rotation. When the intermediate goes to the product, the arene ring slips back from eta(2) to eta(6) coordination. This coordinated movement of the arene ring makes the associative anti attack an accessible pathway for the substitution process. Our calculations predict very similar activation barriers for both syn and anti attacks. In the dissociative path, the rate-determining step is the generation of a coordinatively unsaturated 16-electron ruthenium species. This turns out to be viable once solvent effects are included. The large size of the ancillary ligands on Ru makes the dissociative process as favorable as the associative process. Activation energy calculations reveal that although the dissociative path is favorable for kappa(1) complexes, both dissociative and associative processes can have significant contribution to the hydrolysis reaction in kappa(2) complexes. Once activated by hydrolysis, these complexes react with guanine and adenine bases of DNA. The thermodynamic stabilities of complexes formed with the nucleobases are also presented.
Resumo:
Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head : group interactions dominate the selectivity as well as a substantial part of the affinity. The ab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional ''pseudo-triad'' mechanism, the ''Ca-coordinatedoxyanion'' mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised.
Resumo:
Graded alternate layers of Al2O3 and 8% Y2O3-ZrO2 and their admixtures were plasma sprayed onto bond-coated mild steel. They were evaluated for thermal-shock resistance, thermal-barrier characteristics, hot corrosion resistance (molten NaCl corrodant) and depth of attack, adhesion strength and the presence of phases. Although front-back temperature drops of 423-623 K were observed, some of the coatings showed good adherence even after 100 thermal shack cycles. In the sequence of the graded layers, the oxide which is directly in contact with the bond coat appears to influence the properties especially in coatings of 150 and 300 mu m thickness. Molten NaCl readily attacks the films at high hot-face temperatures (1273 K for 1 h) and the adhesive strength falls significantly by 50-60%. Diffusion of alkaline elements is also found to depend on the chemical composition of the outer coating directly facing the molten corrodant. (C) 1997 Elsevier Science Limited.
Resumo:
We study odd-membered chains of spin-1/2 impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong interimpurity coupling, a residual chain spin-1/2 moment experiences a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely by the ``excess'' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.
Resumo:
We present a sound and complete decision procedure for the bounded process cryptographic protocol insecurity problem, based on the notion of normal proofs [2] and classical unification. We also show a result about the existence of attacks with “high” normal cuts. Our proof of correctness provides an alternate proof and new insights into the fundamental result of Rusinowitch and Turuani [9] for the same setting.
Resumo:
We present a technique for irreversible watermarking approach robust to affine transform attacks in camera, biomedical and satellite images stored in the form of monochrome bitmap images. The watermarking approach is based on image normalisation in which both watermark embedding and extraction are carried out with respect to an image normalised to meet a set of predefined moment criteria. The normalisation procedure is invariant to affine transform attacks. The result of watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. Here, direct-sequence code division multiple access approach is used to embed multibit text information in DCT and DWT transform domains. The proposed watermarking schemes are robust against various types of attacks such as Gaussian noise, shearing, scaling, rotation, flipping, affine transform, signal processing and JPEG compression. Performance analysis results are measured using image processing metrics.
Resumo:
Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.
Resumo:
Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.
Resumo:
We examine a natural, but non-tight, reductionist security proof for deterministic message authentication code (MAC) schemes in the multi-user setting. If security parameters for the MAC scheme are selected without accounting for the non-tightness in the reduction, then the MAC scheme is shown to provide a level of security that is less than desirable in the multi-user setting. We find similar deficiencies in the security assurances provided by non-tight proofs when we analyze some protocols in the literature including ones for network authentication and aggregate MACs. Our observations call into question the practical value of non-tight reductionist security proofs. We also exhibit attacks on authenticated encryption schemes, disk encryption schemes, and stream ciphers in the multi-user setting.
Resumo:
Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.
Resumo:
TCP attacks are the major problem faced by Mobile Ad hoc Networks (MANETs) due to its limited network and host resources. Attacker traceback is a promising solution which allows a victim to identify the exact location of the attacker and hence enables the victim to take proper countermeasure near attack origins, for forensics and to discourage attackers from launching the attacks. However, attacker traceback in MANET is a challenging problem due to dynamic network topology, limited network and host resources such as memory, bandwidth and battery life. We introduce a novel method of TCP attacker Identification in MANET using the Traffic History - MAITH. Based on the comprehensive evaluation based on simulations, we showed that MAITH can successfully track down the attacker under diverse mobile multi-hop network environment with low communication, computation, and memory overhead.