27 resultados para Fashion and Sun Saftey
Resumo:
The effect of the test gas on the flow field around a 120degrees apex angle blunt cone has been investigated in a shock tunnel at a nominal Mach number of 5.75. The shock standoff distance around the blunt cone was measured by an electrical discharge technique using both carbon dioxide and air as test gases. The forebody laminar convective heat transfer to the blunt cone was measured with platinum thin-film sensors in both air and carbon dioxide environments. An increase of 10 to 15% in the measured heat transfer values was observed with carbon dioxide as the test gas in comparison to air. The measured thickness of the shock layer along the stagnation streamline was 3.57 +/- 0.17 mm in air and 3.29 +/- 0.26 mm in carbon dioxide. The computed thickness of the shock layer for air and carbon dioxide were 3.98 mm and 3.02 mm, respectively. The observed increase in the measured heat transfer rates in carbon dioxide compared to air was due to the higher density ratio across the bow shock wave and the reduced shock layer thickness.
Resumo:
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Resumo:
Oxidovanadium(IV) complexes VO(pyphen)(L)]Cl2 (1, 2) and VO(pydppz)(L)]Cl2 (3, 4), where L is 1,10-phenanthroline (phen in 1 and 3) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 2 and 4) are prepared and characterized. The crystal structure of VO(pyphen)(phen)](ClO4)2 (1a) shows a six-coordinate VN5O geometry with a VO2+ moiety in which the polypyridyl ligand binds in a meridional fashion and the phen ligand displays a chelating binding mode with an N-donor site trans to the oxidovanadyl group. The complexes show a dd band within 720-750 nm in DMF. The one-electron paramagnetic complexes are 1:2 electrolytes in DMF. The complexes exhibit an irreversible VIV/VIII redox response near -0.85 V vs. SCE in DMF/0.1 M TBAP. The complexes bind to calf thymus (ct) DNA giving Kb values within 7.5 x 104 to 1.1 x 106 M1. The complexes show poor chemical nuclease activity in the dark and exhibit significant DNA-photocleaving activity in near-IR light of 705 and 785 nm forming .OH radicals. Complexes 2-4 show remarkable photocytotoxicity in HeLa cancer cells. FACS analysis of the HeLa cells treated with complex 4 shows cell death as highlighted by the sub G1 peak. Propidium iodide staining data indicate apoptosis as the primary mode of cell death.
Resumo:
Neutral half-sandwich organometallic ruthenium(II) complexes of the type (?6-cymene)RuCl2(L)] (H1H10), where L represents a heterocyclic ligand, have been synthesized and characterized spectroscopically. The structures of five complexes were also established by single-crystal X-ray diffraction confirming a piano-stool geometry with ?6 coordination of the arene ligand. Hydrogen bonding between the N?H group of the heterocycle and a chlorine atom attached to Ru stabilizes the metalligand interaction. Complexes coordinated to a mercaptobenzothiazole framework (H1) or mercaptobenzoxazole (H6) showed high cytotoxicity against several cancer cells but not against normal cells. In vitro studies have shown that the inhibition of cancer cell growth involves primarily G1-phase arrest as well as the generation of reactive oxygen species (ROS). The complexes are found to bind DNA in a non-intercalative fashion and cause unwinding of plasmid DNA in a cell-free medium. Surprisingly, the cytotoxic complexes H1 and H6 differ in their interaction with DNA, as observed by biophysical studies, they either cause a biphasic melting of the DNA or the inhibition of topoisomerase IIa activity, respectively. Substitution of the aromatic ring of the heterocycle or adding a second hydrogen-bond donor on the heterocycle reduces the cytotoxicity.
Resumo:
Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P-jet = 10(44-45) erg s(-1), typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
The phylogenetic structure of Asclepiadoideae (Apocynaceae) has been elucidated at the tribal and subtribal levels in the last two decades. However, to date, the systematic positions of seven Asian genera, Cosmostigma, Graphistemma, Holostemma, Pentasachme, Raphistemma, Seshagiria and Treutlera, have not been investigated. In this study, we examine the evolutionary relationships among these seven small enigmatic Asian genera and clarify their positions in Asclepiadoideae, using a combination of plastid sequences of rbcL, rps16, trnL and trnL- F regions. Cosmostigma and Treutlera are resolved as members of the non-Hoya clade of Marsdenieae with strong support (maximum parsimony bootstrap support value BSMP = 96, maximum likelihood bootstrap support value BSML = 98, Bayesian-inferred posterior probability PP = 1.0). Pentasachme is resolved as sister of Stapeliinae to Ceropegieae with moderate support (BSMP = 64, BSML = 66, PP = 0.94). Graphistemma, Holostemma, Raphistemma and Seshagiria are all nested in the Asclepiadeae-Cynanchinae clade (BSMP = 97, BSML = 100, PP = 1.0). The study confirms the generally accepted tribal and subtribal structure of the subfamily. One exception is Eustegia minuta, which is placed here as sister to all Asclepiadeae (BSMP = 58, BSML = 76, PP = 0.99) and not as sister to the Marsdenieae + Ceropegieae clade. The weak support and conflicting position indicate the need for a placement of Eustegia as an independent tribe. In Asclepiadeae, a sister group position of Cynanchinae to the Asclepiadinae + Tylophorinae clade is favoured (BSMP = 84, BSML = 88, PP = 1.0), whereas Schizostephanus is retrieved as unresolved. Oxystelma appears as an early-branching member of Asclepiadinae with weak support (BSMP = 52, BSML = 74, PP = 0.69). Calciphila and Solenostemma are also associated with Asclepiadinae with weak support (BSMP = 37, BSML = 45, PP = 0.79), but all alternative positions are essentially without support. The position of Indian Asclepiadoideae in the family phylogeny is discussed. (c) 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174, 601-619.
Resumo:
Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.
Resumo:
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Resumo:
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2 -aEuro parts per thousand 4 minutes, 4 -aEuro parts per thousand 6 minutes, 6 -aEuro parts per thousand 15 minutes, and beyond 15 minutes. We detect the presence of long-period oscillations with periods between 15 and 30 minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.
Resumo:
Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.