40 resultados para Family-structure
Resumo:
Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn2+-dependent dipeptidase. The crystal structure of this protein in the Mn2+-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys(155) and Cys(178), are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
The nucleotide sequence of cosmid B1790, carrying the Rif-Str regions of the Mycobacterium leprae chromosome, has been determined. Twelve open reading frames were identified in the 36716bp sequence, representing 40% of the coding capacity. Five ribosomal proteins, two elongation factors and the β and β'subunits of RNA polymerase have been characterized and two novel genes were found. One of these encodes a member of the so-called ABC family of ATP-binding proteins while the other appears to encode an enzyme involved in repairing genomic lesions caused by free radicals. This finding may well be significant as M. leprae, an intracellular pathogen, lives within macrophages.
Resumo:
Background: A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. Results: In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. Conclusions: Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique `template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.
Resumo:
The complete amino acid sequence of two non identical subunits of the glucose/mannose-specific lectin from Dolichos lab lab (field bean) has been determined by sequential Edman analyses of the intact subunits and peptides derived by enzymatic and chemical cleavage. Peptides were purified by reverse phase high performance liquid chromatography and ion pair chromatography. The D. lab lab lectin is a glycoprotein having two polypeptide chains of 132 and 105 amino acid residues. The amino acid sequence of the D. Lab lab lectin is compared with the various lectins of the family Leguminosae. The D. lab lab lectin is the only species of the tribe Phaseoleae that contains two nonidentical subunits of almost equal size and that shows a specificity to glucose/ mannose. The lectin shows a greater homology to the glucose/mannose specific lectins, especially concanavalin A. The unique subunit architecture of the D. lab lab lectin indicates the presence of new post translational cleavage sites.
Resumo:
Rare-earth nickelates Ln(2)BaNi(1-x)Cu(2)O(5), Ln = Nd and Dy, and Dy2-xYxBaNiO5 have been synthesized in order to investigate the effect of substitution of Ni by Cu and Dy by nonmagnetic Y on the magnetic properties of the nickelates. In Ln(2)BaNi(1-x)Cu(x)O(5), the nickelate structure (x=0.0) changes to the cuprate structure (x=1.0) at a specific composition (x=0.3). The Neel temperature of Nd2BaNi1-xCuxO5 decreases continuously with increase in x upto x=0.3 (T-N = 18K); when x > 0.3, the materials are paramagnetic down to 20K. The mu(eff) in Nd2BaNi1-xCxO5 essentially corresponds to the contribution of the Nd ions. In Dy2-xYxBaNiO5, the Neel temperature decreases from 40K when x=0.0 to 24K when x=1.5. The compositions with 1.5 less than or equal to x less than or equal to 2 (including the x=1.95 composition) are paramagnetic down to 20K, unlike Y2BaNiO5 (x=2.0) which exhibits a T-N of 370K. Even the smallest concentration of paramagnetic Dy seems to destroy the antiferromagnetic Ni-O-Ni chains in Y2BaNiO5.
Resumo:
Triammonium hydrogen disulphate, (NH4)(3)H(SO4)(2), belongs to the family of crystal structures M3H(XO4)(2) (with M = NH4, K, Rb, Cs, and X = S, Se) which display super protonic phases at elevated temperatures, while at room temperature these are relatively poor proton conductors. The crystal structure of triammonium hydrogen disulphate has been determined by X-ray diffraction at -90 degrees C and the variation in the characteristics of the hydrogen bond is discussed in comparison with that of the structures at -110 degrees C and room temperature. It is concluded that the mechanics involving the proton migration in such systems is realised in terms of the variations in the hydrogen bond features with temperature.
Resumo:
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-Image -methionine (AdoMet) has been determined at 1.98 Å resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a β-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively.
Resumo:
A galactose-specific seed lectin from Spatholobous parviflorus (SPL) has been purified, crystallized and its X-ray structure solved. It is the first lectin purified and crystallized from the genus Spatholobus (family: Fabaceae). The crystals belong to the space group P1, with a = 60.792 angstrom, b = 60.998 angstrom, c = 78.179 angstrom, alpha = 78.68 degrees, beta = 88.62 degrees, gamma = 104.32 degrees. The data were collected at 2.04 angstrom resolution under cryocondition, on a MAR image-plate detector system, mounted on a rotating anode X-ray generator. The coordinates of Dolichos biflorus lectin (1lu1) were successfully used for the structure solution by molecular replacement method. The primary structure of the SPL was not known earlier and it was unambiguously visible in the electron density. S. parviflorus lectin is a hetero-dimeric-tetramer with two alpha and two beta chains of 251 and 239 residues respectively. SPL has two metal ions, Ca(2+) and Mn(2+), bound to a loop region of each chain. The SPL monomers are in jelly roll form. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of a beta-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 A. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the ``monocot mannose-binding'' lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.
Resumo:
Background: In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis. Methods: Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle. Results and discussion: The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy. Conclusions: The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.
Resumo:
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a ID sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 angstrom resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six beta-strands forming an anti-parallel beta-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.
Resumo:
Staphylococcus aureus is an opportunistic pathogen that rapidly acquires resistance to frontline antibiotics. The characterization of novel protein targets from this bacterium is thus an important step towards future therapeutic strategies. Here, the crystal structure of an amidohydrolase, SACOL0085, from S. aureus COL is described. SACOL0085 is a member of the M20D family of peptidases. Unlike other M20D peptidases, which are either monomers or dimers, SACOL0085 adopts a butterfly-shaped homotetrameric arrangement with extensive intersubunit interactions. Each subunit of SACOL0085 contains two Mn2+ ions at the active site. A conserved cysteine residue at the active site distinguishes M20D peptidases from other M20 family members. This cysteine, Cys103, serves as bidentate ligand coordinating both Mn2+ ions in SACOL0085.
Resumo:
A new family of ricinoleic acid based polyesters was synthesized using catalyst free melt-condensation polymerization with sebacic acid, citric acid, mannitol and ricinoleic acid as precursors. The use of FT-IR and NMR characterisation techniques confirms the presence of ester linkages in the as-synthesized polymers. Depending on the precursor combination, their relative amount and the degree of curing, a broad range of elastic modulus (22-327 MPa) and tensile strength (0.7-12.7 MPa) can be obtained in the newly synthesized biopolymers. The polymers show rubbery behaviour at a physiological temperature (37 degrees C) and the contact angles of the synthesized polymers fall in the range of 42 degrees to 71 degrees, making them ideal substrates to study delivery of drugs through polymer scaffolds. The cytocompatibility assessment of the cured polymers confirmed good cell attachment and growth of smooth muscle cells (C2C12 myoblast cells). Importantly, oriented cell growth was observed after culturing myoblast cells for 3 days. The in vitro degradation in PBS indicates that the mild cured polymers follow a first order reaction kinetics and have degradation rate constants in the range of 0.009-0.038 h(-1), depending on the relative proportions of monomers. Overall, the results of our study indicate that the physical properties can be tailored by varying the composition of the monomers and curing conditions in the newly developed polyesters. Hence, they may be used as potential substrates for tissue engineering scaffolds and for localized drug delivery.