52 resultados para False confession


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconstructions in optical tomography involve obtaining the images of absorption and reduced scattering coefficients. The integrated intensity data has greater sensitivity to absorption coefficient variations than scattering coefficient. However, the sensitivity of intensity data to scattering coefficient is not zero. We considered an object with two inhomogeneities (one in absorption and the other in scattering coefficient). The standard iterative reconstruction techniques produced results, which were plagued by cross talk, i.e., the absorption coefficient reconstruction has a false positive corresponding to the location of scattering inhomogeneity, and vice-versa. We present a method to remove cross talk in the reconstruction, by generating a weight matrix and weighting the update vector during the iteration. The weight matrix is created by the following method: we first perform a simple backprojection of the difference between the experimental and corresponding homogeneous intensity data. The built up image has greater weightage towards absorption inhomogeneity than the scattering inhomogeneity and its appropriate inverse is weighted towards the scattering inhomogeneity. These two weight matrices are used as multiplication factors in the update vectors, normalized backprojected image of difference intensity for absorption inhomogeneity and the inverse of the above for the scattering inhomogeneity, during the image reconstruction procedure. We demonstrate through numerical simulations, that cross-talk is fully eliminated through this modified reconstruction procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications. (C) 2005 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutral point clamped (NPC), three level converters with insulated gate bipolar transistor devices are very popular in medium voltage, high power applications. DC bus short circuit protection is usually done, using the sensed voltage across collector and emitter (i.e., V-CE sensing), of all the devices in a leg. This feature is accommodated with the conventional gate drive circuits used in the two level converters. The similar gate drive circuit, when adopted for NPC three level converter protection, leads to false V-CE fault signals for inner devices of the leg. The paper explains the detailed circuit behavior and reasons, which result in the occurrence of such false V-CE fault signals. This paper also illustrates that such a phenomenon shows dependence on the power factor of the supplied three-phase load. Finally, experimental results are presented to support the analysis. It is shown that the problem can be avoided by blocking out the V-CE sense fault signals of the inner devices of the leg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the knowledge-based clustering approaches reported in the literature, explicit know ledge, typically in the form of a set of concepts, is used in computing similarity or conceptual cohesiveness between objects and in grouping them. We propose a knowledge-based clustering approach in which the domain knowledge is also used in the pattern representation phase of clustering. We argue that such a knowledge-based pattern representation scheme reduces the complexity of similarity computation and grouping phases. We present a knowledge-based clustering algorithm for grouping hooks in a library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A link failure in the path of a virtual circuit in a packet data network will lead to premature disconnection of the circuit by the end-points. A soft failure will result in degraded throughput over the virtual circuit. If these failures can be detected quickly and reliably, then appropriate rerouteing strategies can automatically reroute the virtual circuits that use the failed facility. In this paper, we develop a methodology for analysing and designing failure detection schemes for digital facilities. Based on errored second data, we develop a Markov model for the error and failure behaviour of a T1 trunk. The performance of a detection scheme is characterized by its false alarm probability and the detection delay. Using the Markov model, we analyse the performance of detection schemes that use physical layer or link layer information. The schemes basically rely upon detecting the occurrence of severely errored seconds (SESs). A failure is declared when a counter, that is driven by the occurrence of SESs, reaches a certain threshold.For hard failures, the design problem reduces to a proper choice;of the threshold at which failure is declared, and on the connection reattempt parameters of the virtual circuit end-point session recovery procedures. For soft failures, the performance of a detection scheme depends, in addition, on how long and how frequent the error bursts are in a given failure mode. We also propose and analyse a novel Level 2 detection scheme that relies only upon anomalies observable at Level 2, i.e. CRC failures and idle-fill flag errors. Our results suggest that Level 2 schemes that perform as well as Level 1 schemes are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filtering methods are explored for removing noise from data while preserving sharp edges that many indicate a trend shift in gas turbine measurements. Linear filters are found to be have problems with removing noise while preserving features in the signal. The nonlinear hybrid median filter is found to accurately reproduce the root signal from noisy data. Simulated faulty data and fault-free gas path measurement data are passed through median filters and health residuals for the data set are created. The health residual is a scalar norm of the gas path measurement deltas and is used to partition the faulty engine from the healthy engine using fuzzy sets. The fuzzy detection system is developed and tested with noisy data and with filtered data. It is found from tests with simulated fault-free and faulty data that fuzzy trend shift detection based on filtered data is very accurate with no false alarms and negligible missed alarms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are concerned with the situation in which a wireless sensor network is deployed in a region, for the purpose of detecting an event occurring at a random time and at a random location. The sensor nodes periodically sample their environment (e.g., for acoustic energy),process the observations (in our case, using a CUSUM-based algorithm) and send a local decision (which is binary in nature) to the fusion centre. The fusion centre collects these local decisions and uses a fusion rule to process the sensors’ local decisions and infer the state of nature, i.e., if an event has occurred or not. Our main contribution is in analyzing two local detection rules in combination with a simple fusion rule. The local detection algorithms are based on the nonparametric CUSUMprocedure from sequential statistics. We also propose two ways to operate the local detectors after an alarm. These alternatives when combined in various ways yield several approaches. Our contribution is to provide analytical techniques to calculate false alarm measures, by the use of which the local detector thresholds can be set. Simulation results are provided to evaluate the accuracy of our analysis. As an illustration we provide a design example. We also use simulations to compare the detection delays incurred in these algorithms.