105 resultados para FINITE-ELEMENT SOLUTION
Resumo:
In this paper a new parallel algorithm for nonlinear transient dynamic analysis of large structures has been presented. An unconditionally stable Newmark-beta method (constant average acceleration technique) has been employed for time integration. The proposed parallel algorithm has been devised within the broad framework of domain decomposition techniques. However, unlike most of the existing parallel algorithms (devised for structural dynamic applications) which are basically derived using nonoverlapped domains, the proposed algorithm uses overlapped domains. The parallel overlapped domain decomposition algorithm proposed in this paper has been formulated by splitting the mass, damping and stiffness matrices arises out of finite element discretisation of a given structure. A predictor-corrector scheme has been formulated for iteratively improving the solution in each step. A computer program based on the proposed algorithm has been developed and implemented with message passing interface as software development environment. PARAM-10000 MIMD parallel computer has been used to evaluate the performances. Numerical experiments have been conducted to validate as well as to evaluate the performance of the proposed parallel algorithm. Comparisons have been made with the conventional nonoverlapped domain decomposition algorithms. Numerical studies indicate that the proposed algorithm is superior in performance to the conventional domain decomposition algorithms. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Resumo:
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution), which requires only three inputs, namely the solid metal concentration, saturation concentration of the dissolved metal ions and diffusion coefficient. A combined eXtended Finite Element Model (XFEM) and level set method is developed in this paper. The extended finite element model handles the jump discontinuity in the metal concentrations at the interface, by using discontinuous-derivative enrichment formulation for concentration discontinuity at the interface. This eliminates the requirement of using front conforming mesh and re-meshing after each time step as in conventional finite element method. A numerical technique known as level set method tracks the position of the moving interface and updates it over time. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed method is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions.
Resumo:
Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.
Resumo:
A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.
Resumo:
The finite element method (FEM) is used to determine for pitch-point, mid-point and tip loading, the deflection curve of a Image 1 diamentral pitch (DP) standard spur gear tooth corresponding to number of teeth of 14, 21, 26 and 34. In all these cases the deflection of the gear tooth at the point of loading obtained by FEM is in good agreement with the experimental value. The contraflexure in the deflection curve at the point of loading observed experimentally in the cases of pitch-point and mid-point loading, is predicted correctly by the FEM analysis.
Resumo:
Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.