146 resultados para FINITE-DIMENSIONAL JORDAN


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an example of a front propagation, we study the propagation of a three-dimensional nonlinear wavefront into a polytropic gas in a uniform state and at rest. The successive positions and geometry of the wavefront are obtained by solving the conservation form of equations of a weakly nonlinear ray theory. The proposed set of equations forms a weakly hyperbolic system of seven conservation laws with an additional vector constraint, each of whose components is a divergence-free condition. This constraint is an involution for the system of conservation laws, and it is termed a geometric solenoidal constraint. The analysis of a Cauchy problem for the linearized system shows that when this constraint is satisfied initially, the solution does not exhibit any Jordan mode. For the numerical simulation of the conservation laws we employ a high resolution central scheme. The second order accuracy of the scheme is achieved by using MUSCL-type reconstructions and Runge-Kutta time discretizations. A constrained transport-type technique is used to enforce the geometric solenoidal constraint. The results of several numerical experiments are presented, which confirm the efficiency and robustness of the proposed numerical method and the control of the Jordan mode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first-order and second-order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth-order RungeKutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two-dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side-by-side. Results of these simulations were extensively compared with the previous numerical data. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new theory of shock dynamics has been developed in the form of a finite number of compatibility conditions along shock rays. It has been used to study the growth or decay of shock strength for accelerating or decelerating piston starting with a nonzero piston velocity. The results show good agreement with those obtained by Harten's high resolution TVD scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsteady free convection flow in the stagnation-point region of a heated three-dimensional body placed in an ambient fluid is studied under boundary layer approximations. We have considered the case where there is an initial steady state that is perturbed by a step-change in the wall temperature. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using a finite difference scheme. The presented results show the temporal development of the momentum and thermal boundary layer characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of massive blowing rates on the steady laminar compressible boundary-layer flow with variable gas properties at a 3-dim. stagnation point (which includes both nodal and saddle points of attachment) has been studied. The equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique for nodal points of attachment but employing a parametric differentiation technique instead of quasilinearization for saddle points of attachment. It is found that the effect of massive blowing rates is to move the viscous layer away from the surface. The effect of the variation of the density- viscosity product across the boundary layer is found to be negligible for massive blowing rates but significant for moderate blowing rates. The velocity profiles in the transverse direction for saddle points of attachment in the presence of massive blowing show both the reverse flow as well as velocity overshoot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All the second-order boundary-layer effects have been studied for the steady laminar compressible 3-dimensional stagnation-point flows with variable properties and mass transfer for both saddle and nodal point regions. The governing equations have been solved numerically using an implicit finite-difference scheme. Results for the heat transfer and skin friction have been obtained for several values of the mass-transfer rate, wall temperature, and also for several values of parameters characterizing the nature of stagnation point and variable gas properties. The second-order effects on the heat transfer and skin friction at the wall are found to be significant and at large injection rates, they dominate over the results of the first-order boundary layer, but the effect of large suction is just the opposite. In general, the second-order effects are more pronounced in the saddle-point region than in the nodal-point region. The overall heat-transfer rate for the 3-dimensional flows is found to be more than that of the 2-dimensional flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness