405 resultados para Evolution equations
Resumo:
A new framework is proposed in this work to solve multidimensional population balance equations (PBEs) using the method of discretization. A continuous PBE is considered as a statement of evolution of one evolving property of particles and conservation of their n internal attributes. Discretization must therefore preserve n + I properties of particles. Continuously distributed population is represented on discrete fixed pivots as in the fixed pivot technique of Kumar and Ramkrishna [1996a. On the solution of population balance equation by discretization-I A fixed pivot technique. Chemical Engineering Science 51(8), 1311-1332] for 1-d PBEs, but instead of the earlier extensions of this technique proposed in the literature which preserve 2(n) properties of non-pivot particles, the new framework requires n + I properties to be preserved. This opens up the use of triangular and tetrahedral elements to solve 2-d and 3-d PBEs, instead of the rectangles and cuboids that are suggested in the literature. Capabilities of computational fluid dynamics and other packages available for generating complex meshes can also be harnessed. The numerical results obtained indeed show the effectiveness of the new framework. It also brings out the hitherto unknown role of directionality of the grid in controlling the accuracy of the numerical solution of multidimensional PBEs. The numerical results obtained show that the quality of the numerical solution can be improved significantly just by altering the directionality of the grid, which does not require any increase in the number of points, or any refinement of the grid, or even redistribution of pivots in space. Directionality of a grid can be altered simply by regrouping of pivots.
Resumo:
In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The solution of a bivariate population balance equation (PBE) for aggregation of particles necessitates a large 2-d domain to be covered. A correspondingly large number of discretized equations for particle populations on pivots (representative sizes for bins) are solved, although at the end only a relatively small number of pivots are found to participate in the evolution process. In the present work, we initiate solution of the governing PBE on a small set of pivots that can represent the initial size distribution. New pivots are added to expand the computational domain in directions in which the evolving size distribution advances. A self-sufficient set of rules is developed to automate the addition of pivots, taken from an underlying X-grid formed by intersection of the lines of constant composition and constant particle mass. In order to test the robustness of the rule-set, simulations carried out with pivotwise expansion of X-grid are compared with those obtained using sufficiently large fixed X-grids for a number of composition independent and composition dependent aggregation kernels and initial conditions. The two techniques lead to identical predictions, with the former requiring only a fraction of the computational effort. The rule-set automatically reduces aggregation of particles of same composition to a 1-d problem. A midway change in the direction of expansion of domain, effected by the addition of particles of different mean composition, is captured correctly by the rule-set. The evolving shape of a computational domain carries with it the signature of the aggregation process, which can be insightful in complex and time dependent aggregation conditions. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mobile P2P technology provides a scalable approach for content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a single item of content (e. g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a destination (interested in the content) or a potential relay (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the linear threshold model. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive joint fluid limit ordinary differential equations. We then study the selection of parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.
Resumo:
We study, in two dimensions, the effect of misfit anisotropy on microstructural evolution during precipitation of an ordered beta phase from a disordered alpha matrix; these phases have, respectively, 2- and 6-fold rotation symmetries. Thus, precipitation produces three orientational variants of beta phase particles, and they have an anisotropic (and crystallographically equivalent) misfit strain with the matrix. The anisotropy in misfit is characterized using a parameter t = epsilon(yy)/epsilon(xx), where epsilon(xx) and epsilon(yy) are the principal components of the misfit strain tensor. Our phase field, simulations show that the morphology of beta phase particles is significantly influenced by 1, the level of misfit anisotropy. Particles are circular in systems with dilatational misfit (t = 1), elongated along the direction of lower principal misfit when 0 < t < 1 and elongated along the invariant direction when - 1 <= t <= 0. In the special case of a pure shear misfit strain (t = - 1), the microstructure exhibits star, wedge and checkerboard patterns; these microstructural features are in agreement with those in Ti-Al-Nb alloys.
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.
Resumo:
We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
A method is presented for obtaining useful closed form solution of a system of generalized Abel integral equations by using the ideas of fractional integral operators and their applications. This system appears in solving certain mixed boundary value problems arising in the classical theory of elasticity.
Resumo:
Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.
Resumo:
In routine industrial design, fatigue life estimation is largely based on S-N curves and ad hoc cycle counting algorithms used with Miner's rule for predicting life under complex loading. However, there are well known deficiencies of the conventional approach. Of the many cumulative damage rules that have been proposed, Manson's Double Linear Damage Rule (DLDR) has been the most successful. Here we follow up, through comparisons with experimental data from many sources, on a new approach to empirical fatigue life estimation (A Constructive Empirical Theory for Metal Fatigue Under Block Cyclic Loading', Proceedings of the Royal Society A, in press). The basic modeling approach is first described: it depends on enforcing mathematical consistency between predictions of simple empirical models that include indeterminate functional forms, and published fatigue data from handbooks. This consistency is enforced through setting up and (with luck) solving a functional equation with three independent variables and six unknown functions. The model, after eliminating or identifying various parameters, retains three fitted parameters; for the experimental data available, one of these may be set to zero. On comparison against data from several different sources, with two fitted parameters, we find that our model works about as well as the DLDR and much better than Miner's rule. We finally discuss some ways in which the model might be used, beyond the scope of the DLDR.
Resumo:
An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.
Resumo:
Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.