34 resultados para Estuarine and fluvial systems


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid state photochemical behaviour of 7-hydroxy-4-styrylcoumarin 1 and several of its derivatives and analogues has been investigated. All the compounds with the exception of 7-methoxy-4-styrylcoumarin 2 are photolabile and yield anti-HT dimers. It has been observed that chloro substitution in the systems studied does not lead to the expected beta-packing mode. The photobehaviour of 1 and 2 has been correlated with their crystal structures. Reasons for alpha-packing have been examined. The systematics in the arrangement of the carbonyl group and phenyl group of the close neighbours in the crystals of 1, 2 and a few other cases are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the effect of terminal substituents on the dynamics of spin and charge transport in donor-acceptor substituted polyenes [D-(CH)(x)-A] chains, also known as push-pull polyenes. We employ a long-range correlated model Hamiltonian for the D-(CH)(x)-A system, and time-dependent density matrix renormalization group technique for time propagating the wave packet obtained by injecting a hole at a terminal site, in the ground state of the system. Our studies reveal that the end groups do not affect spin and charge velocities in any significant way, but change the amount of charge transported. We have compared these push-pull systems with donor-acceptor substituted polymethine imine (PMI), D-(CHN)(x)-A, systems in which besides electron affinities, the nature of p(z) orbitals in conjugation also alternate from site to site. We note that spin and charge dynamics in the PMIs are very different from that observed in the case of push-pull polyenes, and within the time scale of our studies, transport of spin and charge leads to the formation of a ``quasi-static'' state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systems biology is revealing multiple layers of regulatory networks that manifest spatiotemporal variations. Since genes and environment also influence the emergent property of a cell, the biological output requires dynamic understanding of various molecular circuitries. The metabolic networks continually adapt and evolve to cope with the changing milieu of the system, which could also include infection by another organism. Such perturbations of the functional networks can result in disease phenotypes, for instance tuberculosis and cancer. In order to develop effective therapeutics, it is important to determine the disease progression profiles of complex disorders that can reveal dynamic aspects and to develop mutitarget systemic therapies that can help overcome pathway adaptations and redundancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such `emergent' properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck's constant is discrete, not zero. Groups of molecules in solution, in particular polymers ('sols'), can form viscous clusters that behave like elastic solids ('gels'). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of dominant modes is an important step in studying linearly vibrating systems, including flow-induced vibrations. In the presence of uncertainty, when some of the system parameters and the external excitation are modeled as random quantities, this step becomes more difficult. This work is aimed at giving a systematic treatment to this end. The ability to capture the time averaged kinetic energy is chosen as the primary criterion for selection of modes. Accordingly, a methodology is proposed based on the overlap of probability density functions (pdf) of the natural and excitation frequencies, proximity of the natural frequencies of the mean or baseline system, modal participation factor, and stochastic variation of mode shapes in terms of the modes of the baseline system - termed here as statistical modal overlapping. The probabilistic descriptors of the natural frequencies and mode shapes are found by solving a random eigenvalue problem. Three distinct vibration scenarios are considered: (i) undamped arid damped free vibrations of a bladed disk assembly, (ii) forced vibration of a building, and (iii) flutter of a bridge model. Through numerical studies, it is observed that the proposed methodology gives an accurate selection of modes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel one and two dimensional NMR techniques are proposed and utilized for the determination of the signs of the order parameters used for the study of the mobility of the fatty acid chains. The experiments designed to extract this information involve the use of the intensities of the side bands in the spectra of oriented systems spinning at the magic angle. Advantages of the two dimensional technique over the one dimensional method are discussed. The utility of the method in the study of the dynamic properties of membranes and model systems is pointed out.