23 resultados para Erosión susceptibility
Resumo:
Acid denaturation of calf thymus DNA in vitro followed by acridine orange (AO) binding induced a 112% increase in the emission of red, a 58% decrease in green, and a consequential decrease in the ratio of green:red fluorescences from 1.7 to 0.9. This metachromatic property of AO on binding to DNA following acid denaturation was utilized to study the susceptibility of normal and ovine follicle-stimulating hormone (oFSH) actively immunized bonnet monkey spermatozoa voided throughout the year. For analyses, the scattergram generated by the emission of red and green fluorescences by 10,000 AO-bound sperm from each semen sample was divided into 4 quadrant zones representing percentage cells fluorescing high green-low red (Q1), high green-high red (Q2), low green-low red (Q3) and low green-high red. (Q4). Normal monkey sperm obtained during the months of July-December exhibited 76, 13, and 11% cells in Q2, Q3, and Q4 quadrants, respectively. However, during January-June, when the females of the species are markedly subfertile, noncycling, and amenorrhoeic, the spermatozoa ejaculated by the male monkeys exhibited 38, 39, and 23% sperm in Q2, Q3, and Q4, respectively, the differences being highly significant (p < .01-.001). FSH deprivation induced significant shifts in fluorescence emissions, from respective controls, with 39, 33, and 28% cells in Q2, Q3, and Q4, respectively, during July-December, and 15, 48, and 37% sperm in Q2, Q3, and Q4 quadrants, respectively, during January-June. It is postulated that the altered kinetics of germ cell transformations and the deficient spermiogenesis observed earlier following FSH deprivation in these monkeys may have induced the enhanced susceptibility to acid denaturation in sperm.
Resumo:
Landslides are hazards encountered during monsoon in undulating terrains of Western Ghats causing geomorphic make over of earth surface resulting in significant damages to life and property. An attempt is made in this paper to identify landslides susceptibility regions in the Sharavathi river basin downstream using frequency ratio method based on the field investigations during July- November 2007. In this regard, base layers of spatial data such as topography, land cover, geology and soil were considered. This is supplemented with the field investigations of landslides. Factors that influence landslide were extracted from the spatial database. The probabilistic model -frequency ratio is computed based on these factors. Landslide susceptibility indices were computed and grouped into five classes. Validation of LHS, showed an accuracy of 89% as 25 of the 28 regions tallied with the field condition of highly vulnerable landslide regions. The landslide susceptible map generated for the downstream would be useful for the district officials to implement appropriate mitigation measures to reduce hazards.
Resumo:
RAD51C, a RAD51 paralog, has been implicated in homologous recombination (HR), and germ line mutations in RAD51C are known to cause Fanconi anemia (FA)-like disorder and breast and ovarian cancers. The role of RAD51C in the FA pathway of DNA interstrand cross-link (ICL) repair and as a tumor suppressor is obscure. Here, we report that RAD51C deficiency leads to ICL sensitivity, chromatid-type errors, and G(2)/M accumulation, which are hallmarks of the FA phenotype. We find that RAD51C is dispensable for ICL unhooking and FANCD2 monoubiquitination but is essential for HR, confirming the downstream role of RAD51C in ICL repair. Furthermore, we demonstrate that RAD51C plays a vital role in the HR-mediated repair of DNA lesions associated with replication. Finally, we show that RAD51C participates in ICL and double strand break-induced DNA damage signaling and controls intra-S-phase checkpoint through CHK2 activation. Our analyses with pathological mutants of RAD51C that were identified in FA and breast and ovarian cancers reveal that RAD51C regulates HR and DNA damage signaling distinctly. Together, these results unravel the critical role of RAD51C in the FA pathway of ICL repair and as a tumor suppressor.
Resumo:
Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424
Resumo:
It is a tough task to distinguish a short-range ferromagnetically correlated cluster-glass phase from a canonical spin-glass-like phase in many magnetic oxide systems using conventional magnetometry measurements. As a case study, we investigate the magnetic ground state of La0.85Sr0.15CoO3, which is often debated based on phase separation issues. We report the results of two samples of La0.85Sr0.15CoO3 (S-1 and S-2) prepared under different conditions. Neutron depolarization, higher harmonic ac susceptibility and magnetic relaxation studies were carried out along with conventional magnetometry measurements to differentiate subtle changes at the microscopic level. There is no evidence of ferromagnetic correlation in the sample S-2 attributed to a spin-glass phase, and this is compounded by the lack of existence of a second order component of higher harmonic ac susceptibility and neutron depolarization. A magnetic relaxation experiment at different temperatures complements the spin glass characteristic in S-2. All these signal a sharp variance when we consider the cluster-glass-like phase (phase separated) in S-1, especially when prepared from an improper chemical synthesis process. This shows that the nonlinear ac susceptibility is a viable tool to detect ferromagnetic clusters such as those the neutron depolarization study can reveal.
Resumo:
DNA gyrase is a type II topoisomerase that catalyzes the introduction of negative supercoils in the genomes of eubacteria. Fluoroquinolones (FQs), successful as drugs clinically, target the enzyme to trap the gyrase-DNA complex, leading to the accumulation of double-strand breaks in the genome. Mycobacteria are less susceptible to commonly used FQs. However, an 8-methoxy-substituted FQ, moxifloxacin (MFX), is a potent antimycobacterial, and a higher susceptibility of mycobacterial gyrase to MFX has been demonstrated. Although several models explain the mechanism of FQ action and gyrase-DNA-FQ interaction, the basis for the differential susceptibility of mycobacterial gyrase to various FQs is not understood. We have addressed the basis of the differential susceptibility of the gyrase and revisited the mode of action of FQs. We demonstrate that FQs bind both Escherichia coli and Mycobacterium tuberculosis gyrases in the absence of DNA and that the addition of DNA enhances the drug binding. The FQs bind primarily to the GyrA subunit of mycobacterial gyrase, while in E. coli holoenzyme is the target. The binding of MFX to GyrA of M. tuberculosis correlates with its effectiveness as a better inhibitor of the enzyme and its efficacy in cell killing.
Resumo:
The role of gypsum on the strength of lime treated soils after a long period of interaction is not well understood yet. The present study is performed to scrutinize the physical and strength behavior of lime treated soil with varying gypsum content. Lime and gypsum contents varying from 0 to 6% are considered in the present study for curing periods up to 28 days. To understand the long-term effects, the work has been extended up to 365 days, particularly with the use of 6% lime content and varying gypsum contents. Atterberg's limits turned out to be marginally affected by cation exchange. Unconfined compressive strength behavior of lime treated soil varies considerably with gypsum content and curing period. However, trivial alteration in strength is observed in the soil treated with lower lime content (up to 4%) and gypsum content up to 6%. On the contrary, strength of soil-6% lime mixture with addition of varying gypsum content shows acceleration in early strength at 14 days curing period. However, the strength at 28 days of curing declines but regains afterwards for 90 days. The trend at longer curing period for 180 and 365 days is, however, not unique but varies with gypsum contents. An attempt has been made to explain these changes on the basis of the form of gypsum, formation and conversion of reacted compounds (CASHH, CASH, MI and Ettringite). The proposed explanations were supported by detailed characterization through thermal analysis, XRD, SEM and EDAX studies of soil-lime-gypsum mixtures. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.