21 resultados para Equilateral triangles
Resumo:
Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.
Resumo:
The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials There is thus a case for combining these advantages in a so-called hybrid scheme or a `smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform C-p (p >= 1) continuity One such recent attempt, a NURBS based parametric bridging method (Shaw et al 2008b), uses polynomial reproducing, tensor-product non-uniform rational B-splines (NURBS) over a typical FE mesh and relies upon a (possibly piecewise) bijective geometric map between the physical domain and a rectangular (cuboidal) parametric domain The present work aims at a significant extension and improvement of this concept by replacing NURBS with DMS-splines (say, of degree n > 0) that are defined over triangles and provide Cn-1 continuity across the triangle edges This relieves the need for a geometric map that could precipitate ill-conditioning of the discretized equations Delaunay triangulation is used to discretize the physical domain and shape functions are constructed via the polynomial reproduction condition, which quite remarkably relieves the solution of its sensitive dependence on the selected knotsets Derivatives of shape functions are also constructed based on the principle of reproduction of derivatives of polynomials (Shaw and Roy 2008a) Within the present scheme, the triangles also serve as background integration cells in weak formulations thereby overcoming non-conformability issues Numerical examples involving the evaluation of derivatives of targeted functions up to the fourth order and applications of the method to a few boundary value problems of general interest in solid mechanics over (non-simply connected) bounded domains in 2D are presented towards the end of the paper
Resumo:
The radial distribution functions (RDFs) of five xLi2S.(1 - x)B2S3 glasses (x = 0.55, 0.60, 0.67, 0.71 and 0.75) have been determined from neutron diffraction experiments performed at the Institut Laue-Langevin, Grenoble. These glasses are prepared by casting a molten mixture of boron, sulphur and Li2S inside a controlled atmosphere glovebox. Addition of the Li2S Modifier is found gradually to suppress all peaks corresponding to interatomic distances > 3.5 angstrom, which implies that the structural entities present in these glasses become segmented, and therefore more ionic, as x increases. The assumption of the existence of four main structural entities based on four- and three-coordinated borons (the latter carrying bridging and/or non-bridging sulphurs) accounts for all the peaks present in the RDFs as a function of composition. Furthermore, in the most modified glass (x = 0.75), that which contains only 'isolated' BS33- triangles, there seems to be evidence for either octahedral or tetrahedral coordination of Li+ by S- ions
Resumo:
A previous B-11 nuclear magnetic resonance investigation of glasses belonging to the B2S3-Li2S-LiI system had allowed the authors to determine the variation of the number of three and four coordinated boron atoms with composition. These results, in addition to the observation that vitreous B2S3 quite easily forms fibres during casting, have led us to propose structural hypotheses for B2S3 based glasses, which are supported by the present Raman spectroscopy study. For vitreous B2S3 the spectra were accounted for on the basis of the various types of BS3/2 triangles proposed by the model. Molecular orbital considerations allowed us to assign the most significant lines for the binary glasses by assuming that BS3/2 triangles (with or without nonbridging sulphur atoms) and BS4 tetrahedra were present. In the ternary system, lithium iodide has been found to interact slightly on the structural entities, altering their vibrational characteristics without fundamentally modifying their nature.
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
Conditions for the existence of heterochromatic Hamiltonian paths and cycles in edge colored graphs are well investigated in literature. A related problem in this domain is to obtain good lower bounds for the length of a maximum heterochromatic path in an edge colored graph G. This problem is also well explored by now and the lower bounds are often specified as functions of the minimum color degree of G - the minimum number of distinct colors occurring at edges incident to any vertex of G - denoted by v(G). Initially, it was conjectured that the lower bound for the length of a maximum heterochromatic path for an edge colored graph G would be 2v(G)/3]. Chen and Li (2005) showed that the length of a maximum heterochromatic path in an edge colored graph G is at least v(G) - 1, if 1 <= v(G) <= 7, and at least 3v(G)/5] + 1 if v(G) >= 8. They conjectured that the tight lower bound would be v(G) - 1 and demonstrated some examples which achieve this bound. An unpublished manuscript from the same authors (Chen, Li) reported to show that if v(G) >= 8, then G contains a heterochromatic path of length at least 120 + 1. In this paper, we give lower bounds for the length of a maximum heterochromatic path in edge colored graphs without small cycles. We show that if G has no four cycles, then it contains a heterochromatic path of length at least v(G) - o(v(G)) and if the girth of G is at least 4 log(2)(v(G)) + 2, then it contains a heterochromatic path of length at least v(G) - 2, which is only one less than the bound conjectured by Chen and Li (2005). Other special cases considered include lower bounds for the length of a maximum heterochromatic path in edge colored bipartite graphs and triangle-free graphs: for triangle-free graphs we obtain a lower bound of 5v(G)/6] and for bipartite graphs we obtain a lower bound of 6v(G)-3/7]. In this paper, it is also shown that if the coloring is such that G has no heterochromatic triangles, then G contains a heterochromatic path of length at least 13v(G)/17)]. This improves the previously known 3v(G)/4] bound obtained by Chen and Li (2011). We also give a relatively shorter and simpler proof showing that any edge colored graph G contains a heterochromatic path of length at least (C) 2015 Elsevier Ltd. All rights reserved.