411 resultados para Enzyme mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and synthesis of agents that can abstract zinc from their [CCXX] (C=cysteine; X=cysteine/histidine) boxes by thioldisulfide exchange-having as control, the redox parities of the core sulfur ligands of the reagent and the enzyme, has been illustrated, and their efficiency demonstrated by monitoring the inhibition of the transcription of calf thymus DNA by E. coli RNA polymerase, which harbors two zinc atoms in their [CCXX] boxes of which one is exchangeable. Maximum inhibition possible with removal of the exchangeable zinc was seen with redox-sulfanilamide-glutamate composite. In sharp contrast, normal chelating agents (EDTA, phenanthroline) even in a thousand fold excess showed only marginal inhibition, thus supporting an exchange mechanism for the metal removal. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrrolysyl-tRNA synthetase (PyIRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PyIRS (DhPyIRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery rand half-sites reactivity in the case of DhPyIRS) lies in subtle rearrangements of interactions and dynamics at a global level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (14) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (13) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which indude propylthiouracil (PTU), methimazole (MM I), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C=Se) in the selenium analogues is more polarized than the thione (C=S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely understood. Most investigations have revealed that MMI and PTU irreversibly inhibit TPO. PTU, MTU, and their selenium analogues also inhibit ID-1, most likely by reacting with the selenenyl iodide intermediate. The good ID-1 inhibitory activity of Pill and its analogues can be ascribed to the presence of the -N(H)-C(=O)- functionality that can form hydrogen bonds with nearby amino add residues in the selenenyl sulfide state. In addition to the TPO and ID-1 inhibition, the selenium analogues are very good antioxidants. In the presence of cellular reducing agents such as GSH, these compounds catalytically reduce hydrogen peroxide. They can also efficiently scavenge peroxynitrite, a potent biological oxidant and nitrating agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homoserine dehydrogenase (HSD) is an oxidoreductase in the aspartic acid pathway. This enzyme coordinates a critical branch point of the metabolic pathway that leads to the synthesis of bacterial cell-wall components such as L-lysine and m-DAP in addition to other amino acids such as L-threonine, L-methionine and L-isoleucine. Here, a structural rationale for the hydride-transfer step in the reaction mechanism of HSD is reported. The structure of Staphylococcus aureus HSD was determined at different pH conditions to understand the basis for the enhanced enzymatic activity at basic pH. An analysis of the crystal structure revealed that Lys105, which is located at the interface of the catalytic and cofactor-binding sites, could mediate the hydride-transfer step of the reaction mechanism. The role of Lys105 was subsequently confirmed by mutational analysis. Put together, these studies reveal the role of conserved water molecules and a lysine residue in hydride transfer between the substrate and the cofactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An adenylyl cyclase from Mycobacterium avium, Mal 120, is a functional orthologue of a pseudogene Rv1120c from Mycobacterium tuberculosis. We report the crystal structure of Mal 120 in a monomeric form and its truncated construct as a dimer. Mal 120 exists as a monomer in solution and crystallized as a monomer in the absence of substrate or inhibitor. An additional alpha-helix present at the N-terminus of the monomeric structure blocks the active site by interacting with the substrate binding residues and occupying the dimer interface region. However, the enzyme has been found to be active in solution, indicating the movement of the helix away from the interface to facilitate the formation of active dimers in conditions favourable for catalysis. Thus, the N-terminal helix of Ma1120 keeps the enzyme in an autoinhibited state when it is not active. Deletion of this helix enabled us to crystallize the molecule as an active homodimer in the presence of a P-site inhibitor 2',5'-dideoxy-3'-ATP, or pyrophosphate along with metal ions. The substrate specifying lysine residue plays a dual role of interacting with the substrate and stabilizing the dimer. The dimerization loop region harbouring the second substrate specifying residue, an aspartate, shows significant differences in conformation and position between the monomeric and dimeric structures. Thus, this study has not only revealed that significant structural transitions are required for the interconversion of the inactive and the active forms of the enzyme, but also provided precise nature of these transitions. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinases are ubiquitous enzymes that are pivotal to many biochemical processes. There are contrasting views on the phosphoryl-transfer mechanism in propionate kinase, an enzyme that reversibly transfers a phosphoryl group from propionyl phosphate to ADP in the final step of non-oxidative catabolism of L-threonine to propionate. Here, X-ray crystal structures of propionate- and nucleotide-bound Salmonella typhimurium propionate kinase are reported at 1.8-2.0 angstrom resolution. Although the mode of nucleotide binding is comparable to those of other members of the ASKHA superfamily, propionate is bound at a distinct site deeper in the hydrophobic pocket defining the active site. The propionate carboxyl is at a distance of approximate to 5 angstrom from the -phosphate of the nucleotide, supporting a direct in-line transfer mechanism. The phosphoryl-transfer reaction is likely to occur via an associative S(N)2-like transition state that involves a pentagonal bipyramidal structure with the axial positions occupied by the nucleophile of the substrate and the O atom between the - and the -phosphates, respectively. The proximity of the strictly conserved His175 and Arg236 to the carboxyl group of the propionate and the -phosphate of ATP suggests their involvement in catalysis. Moreover, ligand binding does not induce global domain movement as reported in some other members of the ASKHA superfamily. Instead, residues Arg86, Asp143 and Pro116-Leu117-His118 that define the active-site pocket move towards the substrate and expel water molecules from the active site. The role of Ala88, previously proposed to be the residue determining substrate specificity, was examined by determining the crystal structures of the propionate-bound Ala88 mutants A88V and A88G. Kinetic analysis and structural data are consistent with a significant role of Ala88 in substrate-specificity determination. The active-site pocket-defining residues Arg86, Asp143 and the Pro116-Leu117-His118 segment are also likely to contribute to substrate specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra-and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the topology of C-60 and the resulting non-disjoint nature of the lowest unoccupied molecular orbitals, Ne propose a new model for ferromagnetic exchange in C-60-TDAE. Within the Hubbard model, we find that the ferromagnetic exchange integral is stabilized to first order in the inter-ball transfer integral, while the antiferromagnetic coupling is stabilized only to second order. This difference is adequate to counter the larger phase space available for stabilizing the antiferromagnetic state. Thus, the ground state is found to be ferromagnetic for reasonable inter-ball transfer integrals.