18 resultados para Embryo viability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces boulardii was encapsulated by layer-by-layer technique (LbL) using oppositely charged polyelectrolytes, chitosan and dextran sulfate to protect from degradation during its gastrointestinal transit. The protective effect of the coating was evaluated by checking viability after subjecting the coated cells to lyophilisation and simulated gastrointestinal conditions. During lyophilization, coated S. boulardii was found to have an enhanced viability of 7.74 +/- 2.00 log CFU/100 mg (5.62 x 10(6) +/- 2.12 CFU/100 mg) and 5.53 +/- 1.85 log CFU/100 mg (3.46 x 10(5) 1.73 CFU/100 mg) for uncoated cells. On sequential treatment with simulated gastric and intestinal juice, the coated cells had a viability of 4.59 +/- 1.52 log CFU/100 mg (3.8 x 104 +/- 1.52 CFU/100 mg) while only 1.90 +/- 0.80 log CFU/100 mg (0.79 x 102 +/- 0.81 CFU/100 mg) of uncoated cells survived. Confocal studies displayed the selective permeability of the coated cells which plays a significant role in maintaining the integrity and viability of the yeast cells. This clearly indicates that LbL is an efficient protective encapsulation technique and it could be potentially used for improving therapeutic applications of yeast. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes Staphylococcus aureus (MESA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, similar to 60% and similar to 70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CPU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections. (C) 2015 Elsevier B.V. All rights reserved.