249 resultados para Electron Diffraction


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafine powders of SrTiO3 are prepared at 100–150°C by the hydrothermal method, starting from TiO2·xH2O gel and Sr(OH)2 and H2O-isopropanol mixed solvent as the medium, The X-ray diffractograms of the powder show line broadening. The minimum crystallite size obtained ranges from 5 to 20nm with 20% H2O-80% C3H7OH as the reaction medium, as estimated from X-ray half-peak widths and TEM studies. The electron diffraction results indicate high concentration of lattice defects in these crystallites. The optical spectra of the particle suspensions in water show that the absorption around the band gap is considerably broadened, together with the appearance of maxima in the far ultraviolet. Aqueous suspensions of SrTiO3 powders, as such, do not produce H2 or O2 on UV irradiation. After coating with rhodium, H2 and O2 are evolved on illumination. However, the turn over number of O2 is lower than the stoichiometrically expected values from the corresponding values of H2. No correlation of the photocatalytic activity with surface area is observed. The activity of Rh-SrTiO3 slowly deteriorates with extended period of irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rapid quenching technique with a quenching rate of roughly 106°C/sec has been developed to prepare glassy samples of ABO3 type materials. Glasses of potassium lithium niobate have been prepared by this technique. These glasses have been characterized by x-ray diffraction, electron diffraction and differential scanning calorimetry techniques to assess the quality of the obtained glasses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that Tl2Ca2Ba2Cu3O10+δ (2223), the n=3 member of the Tl2O2. Can�1Ba2CunO2n+2 family shows a Tc (zero-resistance) of 125K (onset 140K) only when it is prepared by the sealed tube ceramic method starting from the 1313 composition. The structure is orthorhombic (Image compared to 30� of 2122), but electron diffraction patterns show two possible orthorhombic structures. Lattice images show the expected local structure and also the presence of dislocations and intergrowths. Both 2223 and 2122 oxides absorb microwaves (9.1GHz) intensely in the superconducting state, with some hysteresis. XPS measurements show Cu mainly in the 1+ state, suggesting the important role of oxygen holes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative stabilities of a- and Blo-helical structures for polymers of a-aminoisobutyric acid (Aib) have been worked out, using the classical potential energy functions. To make a comparative study, we have used Buckingham "6-exp" and Kitaigorodsky's potential functions. Conformational analysis of the dipeptide segment with Aib residue indicates the necessity for nonplanar distortion of the peptide unit, which is a common feature in the observed crystal structures with Aib residues. In the range of Aw -10 to +loo studied, a-helical conformations are preferred in the region -3" < Aw < +loo, and Blo-helical conformations are preferred in the region -3" > Aw > -10'. Minimum energy conformations for right-handed structures are found in the +ue region of Aw and correspondingly for left-handed structures in the -ue region of Aw. For Aw - 6", a-helical structures have four- or near fourfold symmetry with h - 1.5 A. Such a helix with n = 4 and h = 1.5 A is termed an a'-helix. This structure is found to be consistent with the electron diffraction data of Malcolm3 and energetically more favorable than the standard 310-helix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research fabrication of crystalline PbZrO3 (PZ) nanoparticles and their phase transformation behavior is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PZ, which was dried at 150 degrees C and then calcined at 300-700 degrees C for 1 h. The morphology, crystallinity and phase formation of as synthesized nanoparticles were studied by the selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermal gravimetric analysis/differential scanning calorimetry (TGA-DSC), and high resolution transmission electron microscope (HRTEM). The XRD, SAED, and TGA-DSC analyses confirmed the tetragonal lead rich zirconia phase (t-Z phase) and monoclinic zirconia phase (m-Z phase) as the intermediate phases during the calcinations process followed by crystallization of single orthorhombic PZ phase at about 700 degrees C. The average PZ particle size was observed about 20 nm as confirmed by TEM study. Energy-dispersive X-ray spectroscopy (EDX) analysis demonstrated that stoichiometric PbZrO3 was formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two dimensional plane can be filled with rhombuses, so as to generate non-periodic tilings with 4, 6, 8, 10 and 12-fold symmetries. Some representative tilings constructed using the rule of inflation are shown. The numerically computed diffraction patterns for the corresponding tilings are also shown to facilitate a comparison with possible X-ray or electron diffraction pictures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of an icosahedral phase in Mg−Al−Ag is better understood on a crystallographic basis rather than on a quantum structural diagram basis. The quasicrystalline structure is delineated in terms of quasiperiodic arrangement of Pauling triacontahedra, which can be identified in the equilibrium structure. Subtle differences in the electron diffraction patterns have been recorded compared to the ideal quasicrystalline pattern. The misalignment of spots and distortions are better attributed to higher order rational approximate structure than anisotropic phason strain. Ares of diffuse intensity have been related to the ordering among the atoms in the clusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapidly solidified Al–Cr alloys up to 20 at. % Cr were studied to delineate the extent of crystalline and quasicrystalline phase formation in these alloys in comparison with as-cast alloys by using transmission electron microscopy and x-ray diffraction technique. The icosahedral quasicrystals are observed from 7 to 15 at. % Cr alloys, while equilibrium ?–Al11Cr2 phase is completely absent. Both rapid solidification and subsequent thermal decomposition studies indicate that the main competing phase is ?–Al2Cr up to 15 at. % Cr. Beyond this composition ?–Al4Cr is the dominant phase together with a small amount of ?4–Al7Cr3. We have shown that the electron diffraction patterns of Al–Cr quasicrystals are often associated with a diffuse intensity distribution, indicative of short-range order. The change in quasilattice constant with composition suggests the existence of structural vacancies. Further, a sudden change from coarse to ultrafine quasicrystalline grain structure in Al-7 at. % Cr alloy points to a change in nucleation mechanism from heterogeneous to homogeneous mode during the rapid solidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monophasic Na0.5La0.5Bi4Ti4O15 powders were synthesized via the conventional solid-state reaction route. The X-ray powder diffraction (XRD), selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM) studies carried out on the as synthesized powdered samples confirmed the phase to be a four-layer Aurivillius that crystallizes in an orthorhombic A2(1)am space group. The microstructure and the chemical composition of the sintered sample were examined by scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDX). The dielectric properties of the ceramics have been studied in the 27-700 degrees C temperature range at various frequencies (100 Hz to 1 MHz). A sharp dielectric anomaly was observed at 580 degrees C for all the frequencies corresponding to the ferroelectric to paraelectric phase transition. Saturated ferroelectric hysteresis loops were observed at 200 degrees C and the associated remnant polarization (P-r) and coercive field (E-c) were found to be 7.4 mu C/cm(2) and 34.8 kV/cm, respectively. AC conductivity analysis confirmed the existence of two different conduction mechanisms in the ferroelectric region. Activation energies calculated from the Arrhenius plots were similar to 0.24 eV and similar to 0.84 eV in the 300-450 degrees C and 450-580 degrees C temperature ranges, respectively. (C) 2010 Elsevier B.V. All rights reserved.