19 resultados para Eigenstates
Resumo:
We have recently suggested a method (Pallavi Bhattacharyya and K. L. Sebastian, Physical Review E 2013, 87, 062712) for the analysis of coherence in finite-level systems that are coupled to the surroundings and used it to study the process of energy transfer in the Fenna-Matthews-Olson (FMO) complex. The method makes use of adiabatic eigenstates of the Hamiltonian, with a subsequent transformation of the Hamiltonian into a form where the terms responsible for decoherence and population relaxation could be separated out at the lowest order. Thus one can account for decoherence nonperturbatively, and a Markovian type of master equation could be used for evaluating the population relaxation. In this paper, we apply this method to a two-level system as well as to a seven-level system. Comparisons with exact numerical results show that the method works quite well and is in good agreement with numerical calculations. The technique can be applied with ease to systems with larger numbers of levels as well. We also investigate how the presence of correlations among the bath degrees of freedom of the different bacteriochlorophyll a molecules of the FMO Complex affect the rate of energy transfer. Surprisingly, in the cases that we studied, our calculations suggest that the presence of anticorrelations, in contrast to correlations, make the excitation transfer more facile.
Resumo:
We present a computational study on the impact of line defects on the electronic properties of monolayer MoS2. Four different kinds of line defects with Mo and S as the bridging atoms, consistent with recent theoretical and experimental observations, are considered herein. We employ the density functional tight-binding (DFTB) method with a Slater-Koster-type DFTB-CP2K basis set for evaluating the material properties of perfect and the various defective MoS2 sheets. The transmission spectra are computed with a DFTB-non-equilibrium Green's function formalism. We also perform a detailed analysis of the carrier transmission pathways under a small bias and investigate the phase of the transmission eigenstates of the defective MoS2 sheets. Our simulations show a two to four fold decrease in carrier conductance of MoS2 sheets in the presence of line defects as compared to that for the perfect sheet.
Resumo:
Unitary evolution and projective measurement are fundamental axioms of quantum mechanics. Even though projective measurement yields one of the eigenstates of the measured operator as the outcome, there is no theory that predicts which eigenstate will be observed in which experimental run. There exists only an ensemble description, which predicts probabilities of various outcomes over many experimental runs. We propose a dynamical evolution equation for the projective collapse of the quantum state in individual experimental runs, which is consistent with the well-established framework of quantum mechanics. In case of gradual weak measurements, its predictions for ensemble evolution are different from those of the Born rule. It is an open question whether or not suitably designed experiments can observe this alternate evolution.
Resumo:
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.