143 resultados para ETHYL CARBAMATE
Resumo:
In the title compound, C12H15N3O5S, an intramolecular N-H center dot center dot center dot O hydrogen bond between the hydrazine unit and one of the carbonyl groups may influence the molecular conformation. In the crystal structure, intermolecular N-H center dot center dot center dot O hydrogen bonds, including one which is bifurcated, link the molecules into a two-dimensional network.
Resumo:
In the title compound, C14H16N2O4 center dot H2O, the dihedral angles between the planes of the 4-hydroxyphenyl and ester groups with the plane of the six-membered tetrahydropyrimidine ring are 87.3 (1) and 75.9 (1)degrees, respectively. The crystal structure is stabilized by O-H center dot center dot center dot O and N-H center dot center dot center dot O hydrogen bonding between the water molecule and the organic functionalities.
Resumo:
In the title compound, C14H15ClN2O2S, the tetrahydropyrimidine ring adopts a twisted boat conformation with the carbonyl group in an s-trans conformation with respect to the C C double bond of the six-membered tetrahydropyrimidine ring. The molecular conformation is determined by an intramolecular C-H center dot center dot center dot pi interaction. The crystal structure is further stabilized by intermolecular N-H center dot center dot center dot O molecular chains and centrosymmetric N-H center dot center dot center dot S dimers.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
In the title compound,C18H13Cl2NO2,the quinoline ring system is almost planar (r.m.s.deviation 0.009 angstrom), and the phenyl and carboxylate planes are twisted away from it by 59.2 (1)and 65.9 (2)degrees,respectively.
Resumo:
In the title compound,C18H14ClNO3,the dihydroquinolin-2-one ring system is almost planar (r.m.s.deviation = 0.033 angstrom).The carboxylate plane and the phenyl group are twisted away from the dihydroquinolin-2-one ring system by 50.3(1) and 64.9(1)degrees,respectively.In the crystal structure, inversion-related molecules form R-2(2)(8)dimers via pairs of N-H center dot center dot center dot O hydrogen bonds.
Resumo:
The title compound, C14H18BrNO3, adopts an extended conformation, with all of the main-chain torsion angles associated with the ester and amino groups close to trans. In the crystal, inversion dimers linked by pairs of N-H center dot center dot center dot O hydrogen bonds are observed.
Resumo:
In the title compound, C19H16ClNO2, the quinoline ring system is planar (r.m.s. deviation = 0.008 angstrom). The phenyl group and the -CO2 fragment of the ester unit form dihedral angles of 60.0 (1) and 60.5 (1)degrees, respectively, with the quinoline ring system.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.
Resumo:
In the title compound, C30H24Cl2N2O3, the two quinoline ring systems are almost planar [maximum deviations = 0.029 (2) and 0.018 (3) angstrom] and the dihedral angle between them is 4.17 (8)degrees. The dihedral angle between the phenyl ring and its attached quinoline ring is 69.06 (13)degrees. The packing is stabilized by C-H center dot center dot center dot O, C-H center dot center dot center dot N, weak pi-pi stacking [centroid-centroid distances = 3.7985 (16) and 3.7662(17) angstrom] and C-H center dot center dot center dot pi interactions.
Resumo:
Some transformation reactions of α-pinene to give 4- and 3-membered ring compounds, not hitherto obtained from this source, are described. The study furnished a convenient method of preparation of the optically active cyclobutanone IVa, the title compound which served as the key substrate for all the transformations reported.
Resumo:
Chemical and spectroscopic data, has shown that the major product from Friedel-Crafts condensation of anisole with ethyl allylmalonate, followed by saponification and decarylation is γ-(o-anisyl)valeric acid and not thepara-isomer, as concluded earlier by different groups of workers.
Resumo:
The condensation product of 2-carbethoxycyclopentanone and ethyl cyanoacetate is ethyl 2-carbethoxycyclopentylidene cyanoacetate (IIa) and not the one described by Kon and Nanji. Similarly, 2-carbomethoxycyclopentanone and methyl cyanoacetate yield methyl 2-carbomethoxycyclopentylidene cyanoacetate (IIb). The by-products obtained in the first reaction are cyclopentylidene cyanoacetate (IV) and the enamine of 2-carbethoxycyclopentanone (VIa).
Resumo:
The Raman spectrum of ethyl chloroacetate has been studied at 13° C., 28° C. and 78° C. The carbonyl frequency was found to be split up into two due to the presence of rotational isomers. The higher frequency line due to thecis isomer was found to decrease in intensity with temperature. It appears that the gauche isomer will predominate in the vapour state. Altogether thirty-eight Raman lines have been recorded. Reasonable assignments for the observed Raman lines were made in comparison with ethyl acetate spectrum.