101 resultados para ELECTRON TRANSPORT PARAMETERS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transport of reactive solutes through fractured porous formations has been analyzed. The transport through the porous block is represented by a general multiprocess nonequilibrium equation (MPNE), which, for the fracture, is represented by an advection-dispersion equation with linear equilibrium sorption and first-order transformation. An implicit finite-difference technique has been used to solve the two coupled equations. The transport characteristics have been analyzed in terms of zeroth, first, and second temporal moments of the solute in the fracture. The solute behavior for fractured impermeable and fractured permeable formations are first compared and the effects of various fracture and matrix transport parameters are analyzed. Subsequently, the transport through a fractured permeable formation is analyzed to ascertain the effect of equilibrium sorption, rate-limited sorption, and the multiprocess nonequilibrium transport process. It was found that the temporal moments were nearly identical for the fractured impermeable and permeable formations when both the diffusion coefficient and the first-order transformation coefficient were relatively large. The multiprocess nonequilibrium model resulted in a smaller mass recovery in the fracture and higher dispersion than the equilibrium and rate-limited sorption models. DOI: 10.1061/(ASCE)HE.19435584.0000586. (C) 2012 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects. (C) 2015 AIP Publishing LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygenrich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction of bismuth metal with WO$_3$ in the absence of oxygen yields interesting bronze-like phases. From analytical electron microscopy and X-ray photoelectron spectroscopy, the product phases are found to have the general composition Bi$_x$ WO$_3$ with bismuth in the 3+ state. Structural investigations made with high resolution electron micrscopy and cognate techniques reveal that when x < 0.02, a perovskite bronze is formed. When x $\geqslant$ 0.02, however, intergrowth tungsten bronzes (i.t.b.) containing varying widths of the WO$_3$ slab are formed, the lattice periodicity being in the range 2.3-5.1 nm in a direction perpendicular to the WO$_3$ slabs. Image-matching studies indicate that the bismuth atoms are in the tunnels of the hexagonal tungsten bronze (h.t.b.) strips and the h.t.b. strips always remain one-tunnel wide. Annealed samples show a satellite structure around the superlattice spots in the electron diffraction patterns, possibly owing to ordering of the bismuth atoms in the tunnels. The i.t.b. phases show recurrent intergrowths extending up to 100 nm in several crystals. The periodicity varies considerably within the same crystal wherever there is disordered intergrowth, but unit cell dimensions can be assigned from X-ray and electron diffraction patterns. The maximum value of x in the i.t.b. phases is ca. 0.07 and there is no evidence for the i.t.b. phase progressively giving way to the h.t.b. phase with increase in x. Hexagonal tungsten bronzes that contain bismuth with x up to 0.02 can be formed by starting from hexagonal WO$_3$, but the h.t.b. phase seems to be metastable. Optical, magnetic and electron transport properties of the i.t.b. phases have been measured and it appears that the electrons become itinerant when x > 0.05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. a-p-Chlorophenoxyisobutyric acid, the ethyl ester of which is widely used as an antihypercholesterolaemic drug, is an inhibitor of energy-transfer reactions in isolated rat liver mitochondria. 2. The compound at lower concentrations (<4.0mmol/mg of mitochondrial protein) inhibits state 3 oxidation, stimulates state 4 oxidation, abolishes respiratory control and stimulates the latent adenosine triphosphatase activity of mitochondria. The inhibition imposed on state 3 oxidation is relieved by dinitrophenol. 3. At higher concentrations it inhibits coupled phosphorylation as well as dinitrophenol-stimulated adenosine triphosphatase activity. The inhibition of state 3 oxidation under these conditions is not reversed by uncouplers. 4. The three coupling sites of phosphorylation exhibit differential susceptibility to inactivation by this compound. Coupled phosphorylation at the first site is abolished at a drug concentration of 3.0mmol/mg of protein. The third site is inactivated when the concentration of the drug reaches 5.0mmol/mg of protein. The second site is the most refractory and drug concentrations of the order of 10.0mmol/mg of protein are required effectively to inhibit phosphorylation at this site. 5. The compound also inhibits ATP-dependent reversal of electron transport as well as the adenosine triphosphatase activity in submitochondrial particles. 6. The oxidation of NADH and succinate in these particles is not inhibited. 7. These properties indicate that the compound acts as an `inhibitory uncoupler' of energy-transfer reactions in isolated mitochondria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NICOTINAMIDE adenine dinucleotide (NAD) has a fundamental role in metabolic processes as an electron transport molecule. Although its chemical structure was elucidated1 in 1934, its detailed conformation remains still to be established in spite of numerous physicochemical applications2. NAD analogues with a variety of substitutions on the bases are known to retain considerable activity of the natural coenzyme as long as the pyrophosphate diester group has been retained3,4. The geometry of this backbone moiety is therefore indispensable to our understanding of the conformation and function of the coenzyme. We have so far no experimental evidence on this in NAD or any other nucleotide coenzyme molecule. X-ray studies have been possible only on those analogues5,6 where the nicotinamide and adenine rings are linked by a trimethylene bridge. The results are conflicting and it is difficult to use them to provide a structural basis for the NAD molecule itself, particularly as the phosphate backbone is absent from these analogues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence for the presence and possible participation of a flavoprotein, coenzyme Q, and a cytochrome in the oxidation of NADH in the cell-free extracts of Agrobacterium tumefaciens was presented. Coenzyme Q10 was established as the homologue by several criteria. The characteristics of the cytochrome showed that it was different from the b and c groups of cytochromes. Amytal, antimycin A, and cyanide inhibited the oxidation of NADH, and from their effects on the electron transport components the following sequence has been proposed: NADH → flavoprotein → coenzyme Q10 → cytochrome oxygen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transport and respiratory pathways are active in both latent and rapidly growing mycobacteria and remain conserved in all mycobacterial species. In mycobacteria, menaquinone is the sole electron carrier responsible for electron transport. Menaquinone biosynthesis pathway is found to be essential for the growth of mycobacteria. Structural analogs of the substrate or product of this pathway are found to be inhibitory for the growth of Mycobacterium,smegmatis and M. tuberculosis. Several plumbagin [5-hydroxy-2-methyl-1, 4-naphthaquinone] derivatives have been analyzed for their inhibitory effects of which butyrate plumbagin was found to be most effective on M. smegmatis mc2155, whereas crotonate plumbagin showed greater activity on M. tuberculosis H37Rv. Effect on electron transport and respiration was demonstrated by butyrate plumbagin inhibiting oxygen consumption in M. smegmatis. Structural modifications of these molecules can further be improved upon to generate new molecules against mycobacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Earlier studies in this laboratory had shown that the malarial parasite can synthesize heme de novo and inhibition of the pathway leads to death of the parasite. It has been proposed that the pathway for the biosynthesis of heme in Plasmodium falciparum is unique involving three different cellular compartments, namely mitochondrion, apicoplast and cytosol. Experimental evidences are now available for the functionality and localization of all the enzymes of this pathway, except protoporphyrinogen IX oxidase (PfPPO), the penultimate enzyme. In the present study. PfPPO has been cloned, expressed and shown to be localized to the mitochondrion by immunofluorescence microscopy. Interestingly, the enzyme has been found to be active only under anaerobic conditions and is dependent on electron transport chain (ETC) acceptors for its activity. The native enzyme present in the parasite is inhibited by the ETC inhibitors, atovaquone and antimycin. Atovaquone, a well known inhibitor of parasite dihydroorotate dehydrogenase, dependent on the ETC, inhibits synthesis of heme as well in P. falciparum culture. A model is proposed to explain the ETC dependence of both the pyrimidine and heme-biosynthetic pathways in P. falciparum. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxidative activity of mitochondria freshly isolated from brown adipose tissue of rats was stimulated two-fold on the addition of small concentrations of exogenous cytochrome c to the reaction medium. Loss of membrane-bound cytochrome c did not occur during isolation of mitochondria. Estimation of the high-affinity binding sites on the organelle membrane indicated that less than a third of these sites remained saturated with cytochrome c. The pigment is thus shown to be a functionally limiting electron transport component in brown adipose tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Exposure of cold-acclimatized rats to heat (37 degrees C) for a short period decreased brown adipose tissue (BAT) mitochondrial substrate-dependent oxygen uptake and H2O2 generation. Both the concentration and substrate-dependent rate of cytochrome b reduction decreased as early as 3 h of heat exposure. These results identify cytochrome b as the locus of regulation of electron transport in BAT mitochondria under conditions of heat stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transport and magnetic properties of several compositions of the La1-xSx-zYzMnO3 system have been investigated in order to explore the effect of yttrium substitution on the magnetoresistance and related properties of these manganates. Yttrium substitution lowers the T-c and the insulator-metal transition temperature, while increasing the peak resistivity. A comparison of the properties of La1-xSrx-zYzMnO3 with the corresponding La1-xCax-zYzMnO3 compositions shows that the observed properties can be related to the average size of the A-site cations.