138 resultados para Dynamic storage allocation (Computer science)
Resumo:
A procedure to evaluate surface-to-air missile battery placement patterns for air defense is presented. A measure of defense effectiveness is defined as a function of kill probability of the defense missiles and the nature of the surrounding terrain features. The concept of cumulative danger index is used to select the best path for a penetrating hostile aircraft for any given pattern of placement. The aircraft is assumed to be intelligent and well-informed. The path is generated using a dynamic programming methodology. The software package so developed can be used off-line to choose the best among a number of possible battery placement patterns.
Resumo:
Recently, Brownian networks have emerged as an effective stochastic model to approximate multiclass queueing networks with dynamic scheduling capability, under conditions of balanced heavy loading. This paper is a tutorial introduction to dynamic scheduling in manufacturing systems using Brownian networks. The article starts with motivational examples. It then provides a review of relevant weak convergence concepts, followed by a description of the limiting behaviour of queueing systems under heavy traffic. The Brownian approximation procedure is discussed in detail and generic case studies are provided to illustrate the procedure and demonstrate its effectiveness. This paper places emphasis only on the results and aspires to provide the reader with an up-to-date understanding of dynamic scheduling based on Brownian approximations.
Resumo:
We present a randomized and a deterministic data structure for maintaining a dynamic family of sequences under equality tests of pairs of sequences and creations of new sequences by joining or splitting existing sequences. Both data structures support equality tests in O(1) time. The randomized version supports new sequence creations in O(log(2) n) expected time where n is the length of the sequence created. The deterministic solution supports sequence creations in O(log n (log m log* m + log n)) time for the mth operation.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
Just-in-Time (JIT) compilers for Java can be augmented by making use of runtime profile information to produce better quality code and hence achieve higher performance. In a JIT compilation environment, the profile information obtained can be readily exploited in the same run to aid recompilation and optimization of frequently executed (hot) methods. This paper discusses a low overhead path profiling scheme for dynamically profiling AT produced native code. The profile information is used in recompilation during a subsequent invocation of the hot method. During recompilation tree regions along the hot paths are enlarged and instruction scheduling at the superblock level is performed. We have used the open source LaTTe AT compiler framework for our implementation. Our results on a SPARC platform for SPEC JVM98 benchmarks indicate that (i) there is a significant reduction in the number of tree regions along the hot paths, and (ii) profile aided recompilation in LaTTe achieves performance comparable to that of adaptive LaTTe in spite of retranslation and profiling overheads.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
Emerging high-dimensional data mining applications needs to find interesting clusters embeded in arbitrarily aligned subspaces of lower dimensionality. It is difficult to cluster high-dimensional data objects, when they are sparse and skewed. Updations are quite common in dynamic databases and they are usually processed in batch mode. In very large dynamic databases, it is necessary to perform incremental cluster analysis only to the updations. We present a incremental clustering algorithm for subspace clustering in very high dimensions, which handles both insertion and deletions of datapoints to the backend databases.
Resumo:
We consider the problem of maintaining information about the rank of a matrix $M$ under changes to its entries. For an $n \times n$ matrix $M$, we show an amortized upper bound of $O(n^{\omega-1})$ arithmetic operations per change for this problem, where $\omega < 2.376$ is the exponent for matrix multiplication, under the assumption that there is a {\em lookahead} of up to $\Theta(n)$ locations. That is, we know up to the next $\Theta(n)$ locations $(i_1,j_1),(i_2,j_2),\ldots,$ whose entries are going to change, in advance; however we do not know the new entries in these locations in advance. We get the new entries in these locations in a dynamic manner.
Resumo:
In achieving higher instruction level parallelism, software pipelining increases the register pressure in the loop. The usefulness of the generated schedule may be restricted to cases where the register pressure is less than the available number of registers. Spill instructions need to be introduced otherwise. But scheduling these spill instructions in the compact schedule is a difficult task. Several heuristics have been proposed to schedule spill code. These heuristics may generate more spill code than necessary, and scheduling them may necessitate increasing the initiation interval. We model the problem of register allocation with spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. The formulation minimizes the increase in initiation interval (II) by optimally placing spill code and simultaneously minimizes the amount of spill code produced. To the best of our knowledge, this is the first integrated formulation for register allocation, optimal spill code generation and scheduling for software pipelined loops. The proposed formulation performs better than the existing heuristics by preventing an increase in II in 11.11% of the loops and generating 18.48% less spill code on average among the loops extracted from Perfect Club and SPEC benchmarks with a moderate increase in compilation time.
Resumo:
A customer reported problem (or Trouble Ticket) in software maintenance is typically solved by one or more maintenance engineers. The decision of allocating the ticket to one or more engineers is generally taken by the lead, based on customer delivery deadlines and a guided complexity assessment from each maintenance engineer. The key challenge in such a scenario is two folds, un-truthful (hiked up) elicitation of ticket complexity by each engineer to the lead and the decision of allocating the ticket to a group of engineers who will solve the ticket with in customer deadline. The decision of allocation should ensure Individual and Coalitional Rationality along with Coalitional Stability. In this paper we use game theory to examine the issue of truthful elicitation of ticket complexities by engineers for solving ticket as a group given a specific customer delivery deadline. We formulate this problem as strategic form game and propose two mechanisms, (1) Division of Labor (DOL) and (2) Extended Second Price (ESP). In the proposed mechanisms we show that truth telling by each engineer constitutes a Dominant Strategy Nash Equilibrium of the underlying game. Also we analyze the existence of Individual Rationality (IR) and Coalitional Rationality (CR) properties to motivate voluntary and group participation. We use Core, solution concept from co-operative game theory to analyze the stability of the proposed group based on the allocation and payments.
Resumo:
Superscalar processors currently have the potential to fetch multiple basic blocks per cycle by employing one of several recently proposed instruction fetch mechanisms. However, this increased fetch bandwidth cannot be exploited unless pipeline stages further downstream correspondingly improve. In particular,register renaming a large number of instructions per cycle is diDcult. A large instruction window, needed to receive multiple basic blocks per cycle, will slow down dependence resolution and instruction issue. This paper addresses these and related issues by proposing (i) partitioning of the instruction window into multiple blocks, each holding a dynamic code sequence; (ii) logical partitioning of the registerjle into a global file and several local jles, the latter holding registers local to a dynamic code sequence; (iii) the dynamic recording and reuse of register renaming information for registers local to a dynamic code sequence. Performance studies show these mechanisms improve performance over traditional superscalar processors by factors ranging from 1.5 to a little over 3 for the SPEC Integer programs. Next, it is observed that several of the loops in the benchmarks display vector-like behavior during execution, even if the static loop bodies are likely complex for compile-time vectorization. A dynamic loop vectorization mechanism that builds on top of the above mechanisms is briefly outlined. The mechanism vectorizes up to 60% of the dynamic instructions for some programs, albeit the average number of iterations per loop is quite small.
Resumo:
In this paper, we consider the synthesis of decentralized dynamic compensators for large systems. The eliminant approach is used to obtain sufficient conditions for the existence of proper, stable, decentralized observer-controllers for stabilizing a large system. An illustrative example is given.