356 resultados para Doppler frequency shift
Resumo:
The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
MEMS resonators are designed for a fixed resonant frequency. Therefore, any shift in the resonant frequency of the final fabricated structure can be a denting factor for its suitability towards a desired application. There are numerous factors which alter the designed resonant frequency of the fabricated resonator such as the metal layer deposited on top of the beam and the residual stresses present in the fabricated structure. While the metal coating, which acts as electrode, increases the stiffness and the effective mass of the composite structure, the residual stress increases or decreases the net stiffness if it is a tensile or compressive type respectively. In this paper, we investigate both these cases by taking two different structures, namely, the micro cantilever beam with gold layer deposited on its top surface and the MEMS gyroscope with residual stresses. First, we carry out experiments to characterize both these structures to find their resonant frequencies. Later, we analytically model those effects and compare them with the experimentally obtained values. Finally, it is found that the analytical models give an error of less than 10% with respect to the experimental results in both the cases.
Resumo:
In this study, we derive a fast, novel time-domain algorithm to compute the nth-order moment of the power spectral density of the photoelectric current as measured in laser-Doppler flowmetry (LDF). It is well established that in the LDF literature these moments are closely related to fundamental physiological parameters, i.e. concentration of moving erythrocytes and blood flow. In particular, we take advantage of the link between moments in the Fourier domain and fractional derivatives in the temporal domain. Using Parseval's theorem, we establish an exact analytical equivalence between the time-domain expression and the conventional frequency-domain counterpart. Moreover, we demonstrate the appropriateness of estimating the zeroth-, first- and second-order moments using Monte Carlo simulations. Finally, we briefly discuss the feasibility of implementing the proposed algorithm in hardware.
Resumo:
SAW matched filter is commonly used in spread spectrum communication receivers in order to maximize the SNR prior to detection, At times the receiver would be a mobile one while the signal is processed at the IF level, In that case frequency deviations due to Doppler shift or temperature dependence of the acoustic medium used for SAW device would, severely effect it's performance, The impact of these errors on the receiver performance is analyzed on a generalised basis.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.
Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
Soft-decision multiple-symbol differential sphere decoding (MSDSD) is proposed for orthogonal frequency-division multiplexing (OFDM)-aided differential space-time shift keying (DSTSK)-aided transmission over frequency-selective channels. Specifically, the DSTSK signaling blocks are generated by the channel-encoded source information and the space-time (ST) blocks are appropriately mapped to a number of OFDM subcarriers. After OFDM demodulation, the DSTSK signal is noncoherently detected by our soft-decision MSDSD detector. A novel soft-decision MSDSD detector is designed, and the associated decision rule is derived for the DSTSK scheme. Our simulation results demonstrate that an SNR reduction of 2 dB is achieved by the proposed scheme using an MSDSD window size of N-w = 4 over the conventional soft-decision-aided differential detection benchmarker, while communicating over dispersive channels and dispensing with channel estimation (CE).
Resumo:
In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f(FMR)) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 degrees C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f(FMR) has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies. (C) 2015 AIP Publishing LLC.
Resumo:
In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.
Resumo:
We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).