58 resultados para Donor Lymphocyte Infusions
Resumo:
A class of conjugated molecules containing donor (thiophene) and acceptor (malononitrile) is synthesized by Knoevenagel condensation reaction between 2-(2,6-dimethy1-4H-pyran-4-ylidene) malononitrile and thiophene carbaldehyde containing two and three thiophene units. The resulting molecules are characterized by H-1 and C-13 NMR. We have performed UV-vis absorption, fluorescence, and cyclic voltammetry measurements on these materials. The spectroscopic and electrochemical measurements proved beyond doubt that these materials possess lowexcitation gap and are suitable for being an active material in various electronic devices. We have also performed electronic structure calculations using density functional theory (DFT) and INDO/SCI methods to characterize the ground and excited states of this class of molecules. These donor-acceptor molecules show a strong charge transfercharacter that increases with the increase in the number of thiophene rings coupled to the malononitrile acceptor moiety. We have also calculated the pi-coherence length, Stoke's shift, and effect of solvents on excited states for this class of molecules, Our theoretical values agree well with experimental results.
Replication of Japanese encephalitis virus in mouse brain induces alterations in lymphocyte response
Resumo:
The experimental model using intracerebral (i.c.) challenge was employed in many studies evaluating the protection against disease induced by Japanese encephalitis virus (JEV). We investigated alterations in peripheral lymphocyte response caused by i.c. infection of mice with JEV. Splenocytes from the i.c.-infected mice showed suppressed proliferative response to concanavalin A (con A) and anti-CD3 antibody stimulation. At the same time, the expression of CD25 (IL-2R) and production of IL-2 was inhibited. Addition of anti-CD28 antibody restored the decreased anti-CD3 antibody-mediated proliferation in the splenocytes. Moreover, the number of con A-stimulated cells secreting IL-4 was significantly reduced in splenocytes from i.c.-infected mice. These studies suggested that the i.c. infection with JEV might involve additional immune modulation effects due to massive virus replication in the brain.
Resumo:
The Charge-transfer equilibria of a number of substituted pyridines with iodine have been investigated. Solvent effects on the charge-transfer equilibrium of the pyridineiodine system have been examined. Hydrogen bonding data of substituted pyridines with phenol have been reported.
Spectroscopic studies of n-donor - σ-acceptor systems: Carbonyl and thiocarbonyl compounds as donors
Resumo:
The interaction of ketones and various thiocarbonyl derivatives with iodine has been examined. The thermodynamics of the interaction of carbonyl and thiocarbonyl donors have been discussed and compared.
Resumo:
The donor-acceptor interactions of alkylthioureas and thiocarbanilides with halogens have been investigated in detail employing electronic and infra-red spectroscopy. Various correlations of the spectroscopic and thermodynamic data have been presented. Alkylthioureas are by far the strongest donors known, and give high equilibrium constants (10,000-40,000 l. mole-1) and enthalpies of formation (9-18 kcal mole-1). The perturbation of the various vibrational frequencies due to charge transfer have also been studied. Hydrogen bonding of thioureas with hydroxylic compounds have been reported.
Resumo:
The interaction of iodine with triphenylamine ,tripheny lphosphine, triphenylarsine and triphenystibine has been investigated by electronic spectroscopy. Transformation of the outer charge-transfer complexes to the inner complexes (quarternary salts) has been examined. The relations of the ionization potentials of the donors with the hvc.t have been discussed and various c.t. parameters have been estimated. Hydrogen bonding of these donors with phenol have been reported.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
In this work diketopyrrolopyrrole based copolymers (PDPP-BBT and TDPP-BBT) containing a donor-acceptor structural unit have been explored as organic Sensitizers for quasi-solid state dye Sensitized solar cells. Polymer-sensitized solar cells (PSSC) fabricated utilizing PDPP-BBT and TDPP-BBT as the active layer resulted in a typical power conversion efficiency of 1.43% and 2.41%, respectively. The power conversion efficiency of PSSCs based on TDPP-BBT With use of TiCl4-modified TiO2 photoanode was about 3.06%, attributed to the reduced back recombination reaction and more charge carriers in the external Circuit.
Resumo:
HeI photoelectron spectra of 1:1 electron donor-acceptor complexes are discussed in the light of molecular orbital calculations. The complexes discussed include those formed by BH3, BF3 and SO2. Some systematics have been found in the ionization energy shifts of the complexes compared to the free components and these are related to the strength of the donor-acceptor bond. Hel spectra of hydrogen bonded complexes are discussed in comparison with results from MO calculations. Limitations of such studies as well as scope for further investigations are indicated.
Resumo:
An experimental study to ascertain the role of external electron donor in methylene blue sensitized dichromated gelatin (MBDCG) holograms has been carried out. The required volume holographic transmission gratings in MBDCG have been recorded using 633-nm light from a He-Ne laser. Three well-known electron donors, namely, N, N-dimethylformamide (DMF); ethylenediaminetetraacetic acid (EDTA); triethanolamine (TEA), were used in this study. The variation of diffraction efficiency (η) as a function of light exposure (E) and concentration (C) of the electron donor under consideration was chosen as the figure of merit for judging the role of external electron donor in MBDCG holograms. A self-consistent analysis of the experimental results was carried out by recalling the various known facts about the photochemistry and the hologram formation in DSDCG and also DCG. The important findings and conclusions are as follows: (i) Each η vs E graph is a bell-shaped curve and its peak height is influenced in a characteristic manner by the external electron donor used. (ii) High diffraction efficiency/recording speed can be achieved in pure MBDCG holograms. (iii) The diffraction efficiency/recording speed achieved in electron donor sensitized MBDCG holograms did not show any significant improvement at all over that observed in pure MBDCG holograms. (iv) In electron donor sensitized MBDCG holograms, the electron donor used, depending on its type and concentration, appears to promote the process of cross-linking of gelatin molecules in a manner to either retain or deteriorate the refractive-index modulation achieved using pure MBDCG.
Resumo:
Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.
Resumo:
We report the absorption spectra, oscillator strengths, ground state and excited state dipole moments, and molecular second order polarizability coefficients (βCT) due to donor—acceptor charge transfer in four trisubstituted ethylenes, namely 1,1-bisdimethylamino-2-nitroethylene, 1,1-bispyrolidino-2-nitroethylene, 1,1-bispiperidino-2-nitroethylene and 1,1-bismorpholino-2-nitroethylene. The results are compared with that of trans-N,N-dimethylamino-nitroethylene, which has a large βCT. The powder second harmonic generation (SHG) intensity of all these molecules is also measured and only 1,1-bispiperidino-2-nitroethylene is found to possess an efficiency of 20% of that of urea under the same conditions. The SHG efficiency of this compound and deficiency in the other molecules in the powdered state is discussed in terms of their arrangements in the unit cell. The crystal structure of the active molecule is also presented and the structure—property relationship is critically examined in all these molecules.
Resumo:
A series of rhodium(III) complexes of certain hydroxyimino-beta-diketones were synthesised and their structures assigned on the basis of elemental analyses and i.r. and1H n.m.r. spectral studies, The complexes exhibit coordination through carbonyl oxygen and nitrogen of the hydroxy-imino groups in the ligands.1H and13C n.m.r. studies show that the ligands exist in the isonitroso form in CDCl3.
Resumo:
Arene ruthenium(II) Schiff base complexes of formulations [(η -p-cymene)RuCl(C5H4N-2-CH=NC6H4-p-X)](ClO4) (1) and [(η6-p-cymene)RuCl(O-o-C6H4CH=NC6H4-p-X)] (2) (X = H, Me, OMe, NO2, Cl) were prepared by reacting [(η6-p-cymene)RuCl2]2 with corresponding pyridine-2-carboxaldimines and sodium salts of salicylaldimines in dry THF, respectively. Complex 1 is isolated as a perchlorate salt. The molecular structure of [(η6-p-cymene)RuCl(C5H4 N-2-CH=NC6H4-p-Me)]Cl·C6H6·H2O has been determined by X-ray crystallography. The complex contains an η6-p-cymene group, a chloride and a bidentate chelating Schiff base ligand.