23 resultados para Domitian, Emperor of Rome, 51-96.
Resumo:
Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.
Resumo:
Glasses of the composition 0.20 Bi2O3 - 0.30 TiO2 - 0.50 SrB4O7 and 0.30 Bi2O3 - 0.45 TiO2 - 0.25 SrB4O7 have been fabricated by conventional glass processing technique. These glasses have been characterized using X-ray powder diffraction (XRD), differential thermal analysis (DTA) and high resolution transmission electron microscopy (HRTEM). The frequency response of the dielectric constant and the loss tangent of these glasses has been studied. The formation of the crystalline bismuth titanate, Bi4Ti3O12 (BiT) phase in the heat treated samples has been confirmed by XRD and HRTEM studies. The measured ET Of the glass-ceramics are found to be in good agreement with those predicted by the logarithmic mixture rule. Optical second harmonic generation (SHG) at 1064 nm has been observed in the heat treated samples and is attributed to the formation of crystalline Bi4Ti3O12 (BiT) phase in the SrB4O7 (SBO) matrix.
Resumo:
In this report, the currentvoltage (IV) characteristics of Au/GaN Schottky diodes have been carried out in the temperature range of 300510?K. The estimated values of the Schottky-barrier height (SBH) and the ideality factor of the diodes based on the thermionic emission (TE) mechanism were found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The conventional Richardson plot of ln(Is/T2) versus 1/kT gives the SBH of 0.51?eV and Richardson constant value of 3.23?X?10-5?A?cm-2?K-2 which is much lower than the known value of 26.4?A?cm-2?K-2 for GaN. Such discrepancies of the SBH and Richardson constant value were attributed to the existence of barrier-height inhomogeneities at the Au/GaN interface. The modified Richardson plot of ln(Is/T2)q2 sigma 2/2k2T2 versus q/kT, by assuming a Gaussian distribution of barrier heights at the Au/GaN interface, provided the SBH of 1.47?eV and Richardson constant value of 38.8?A?cm-2?K-2. The temperature dependence of the barrier height is interpreted on the basis of existence of the Gaussian distribution of the barrier heights due to the barrier-height inhomogeneities at the Au/GaN interface.
Resumo:
A number of spectral analysis of surface wave tests were performed on asphaltic and cement concrete pavements by dropping freely a 6.5kg spherical mass, having a radius of 5.82cm, from a height (h) of 0.51.5m. The maximum wavelength ((max)), up to which the shear wave velocity profile can be detected with the usage of surface wave measurements, increases continuously with an increase in h. As compared to the asphaltic pavement, the values of (max) and (min) become greater for the chosen cement concrete pavement, where (min) refers to the minimum wavelength. With h=0.5m, a good assessment of the top layers of both the present chosen asphaltic and the cement concrete pavements, including soil subgrade, can be made. For a given h, as compared to the selected asphaltic pavement, the first receiver in case of the chosen cement concrete pavement needs to be placed at a greater distance from the source. Inverse analysis has also been performed to characterise the shear wave velocity profile of different layers of the pavements.
Resumo:
Background: Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Methods: Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Results: Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. Conclusion: The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.
Resumo:
Self-assembly of a chloro-bridged half-sandwich p-cymene ruthenium(II) complex Ru-2(mu-Cl-2)(eta(6)-p-cymene)(2)Cl-2] 1 with linear ditopic donor L; trans-1,2-bis(4-pyridyl) ethylene] in presence of 2 eq. AgNO3 in CH3CN yielded a chloro-bridged molecular rectangle 2. The rectangle 2 was isolated as nitrate salt in high yield (90 %) and characterized by infra-red, H-1 NMR spectroscopy including ESI-MS analyses. Molecular structure of 2 was determined by single crystal X-ray diffraction study The diffraction analysis shows that 2 adopts a tetranuclear rectangular geometry with the dimensions of 5.51 angstrom x 13.29 angstrom and forming an infinite supramolecular chain with large internal porosity arising through multiple pi-pi and CH-pi interactions between the adjacent rectangles. Furthermore, rectangle 2 is used as selective receptor for phenolic-nitroaromatic compounds such as picric acid, dinitrophenol and nitrophenol.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Earthworm burrow systems are generally described based on postulated behaviours associated with the three ecological types. In this study, we used X-ray tomography to obtain 3D information on the burrowing behaviour of six very common anecic (Aporrectodea nocturna and Lumbricus terrestris) and endogeic (Aporrectodea rosea, Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea icterica) earthworm species, introduced into repacked soil cores for 6 weeks. A simple water infiltration test, the Beerkan method, was also used to assess some functional properties of these burrow systems. Endogeic worms make larger burrow systems, which are more highly branched, less continuous and of smaller diameter, than those of anecic worms. Among the anecic species, L. terrestris burrow systems are shorter (9.2 vs 21.2 m) with a higher number (14.5 vs 23.5) of less branched burrows (12.2 vs 20.2 branches m(-1)), which are also wider (7.78 vs 5.16 mm) than those of A. nocturna. In comparison, the burrow systems made by endogeic species appeared similar to each other. However, A. rosea burrows were short and narrow, whereas A. icterica had a longer burrow system (15.7 m), more intense bioturbation intensity (refilled macropores or soil lateral compaction around them) and thus a greater number of burrows. Regarding water infiltration, anecic burrow systems were far more efficient due to open burrows linking the top and bottom of the cores. For endogeic species, we observed a linear relationship between burrow length and the water infiltration rate (R (2) = 0.49, p < 0.01). Overall, the three main characteristics significantly influencing water infiltration were burrow length, burrow number and bioturbation volume. This last characteristic highlighted the effect of burrow refilling by casts.