94 resultados para Distribution Functions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The liquid and the glassy phases of 2,2-dimethylbutane have been investigated by isothermal isobaric ensemble Monte Carlo simulation. Thermodynamic Properties and radial distribution functions for both the liquid and the glass have been obtained. The radial distribution functions have been classified into three types based on the accessibility of the group. It has been shown that the structure of the Iiquid and the glass can be understood in terms of the above classification of the radial distribution functions. Molecular reorientation plays an important role in the structural rearrangement accompanying glass formation. As much as 35% of the contribution to the increase in the intermolecular interaction energy on vitrification is due to the reorientation of the neighbouring pairs of molecules. The observed changes in the dimerisation energy and the bonding energy distribution function are consistent with the observed structural changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed molecular dynamics simulations of argon in zeolite NaCaA are reported. Thermodynamic, structural, and dynamical properties of the sorbate as a function of temperature have been obtained. The properties calculated include various site-site radial distribution functions, different energy distribution functions, selfdiffusion coefficients, the power spectra, and properties relating to cage-to-cage diffusion. The results suggest that sorbate is delocalized above 300 K. Both modes of cage-to-cage diffusion-the surface-mediated and centralized diffusion-are associated with negative barrier heights. Surprisingly, rate of cage-to-cage diffusion is associated with negative and positive activation energies below and above 500 K. The observed differences in the behavior of the rate of cage-to-cage diffusion between Xe-NaY and Ar-NaCaA systems and the nature of the potential energy surface are discussed. Presence of sorbatezeolite interactions results in significant enhancement in the rate of cage-to-cage diffusion and rate of cage visits. It is shown that properties dependent on the long-time behavior such as the diffusion coefficient and the rate of cages visited exhibit the expected Arrhenius dependence on temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter Lambda to distinguish between vortical and extensional regions. We then use a direct numerical simulation of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with an exponent theta = 2.9 +/- 0.2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radial distribution functions (RDFs) of five xLi2S.(1 - x)B2S3 glasses (x = 0.55, 0.60, 0.67, 0.71 and 0.75) have been determined from neutron diffraction experiments performed at the Institut Laue-Langevin, Grenoble. These glasses are prepared by casting a molten mixture of boron, sulphur and Li2S inside a controlled atmosphere glovebox. Addition of the Li2S Modifier is found gradually to suppress all peaks corresponding to interatomic distances > 3.5 angstrom, which implies that the structural entities present in these glasses become segmented, and therefore more ionic, as x increases. The assumption of the existence of four main structural entities based on four- and three-coordinated borons (the latter carrying bridging and/or non-bridging sulphurs) accounts for all the peaks present in the RDFs as a function of composition. Furthermore, in the most modified glass (x = 0.75), that which contains only 'isolated' BS33- triangles, there seems to be evidence for either octahedral or tetrahedral coordination of Li+ by S- ions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of Monte Carlo calculations of 2,2-dimethylpropane (neopentane), n-pentane, and 2,2-dimethylbutane (neohexane) at several temperatures, thermodynamic properties and radial distribution functions as well as dimerization and bonding energy distribution functions are reported for both liquid and glassy states. Changes in the radial distribution functions on cooling depend on whether the groups are accessible (peripheral) or inaccessible. Peaks in the radial distribution functions corresponding to peripheral groups do not shift to lower distances on cooling and at times display a large increase in the intensity of the first peak. The peaks due to inaccessible groups, on the other hand, shift to lower distances on cooling. The magnitude of the reorientational contribution in determining the resulting structure of the glass is estimated for the different hydrocarbon molecules investigated. The reorientational contribution is highest for neopentane (26%) followed by isopentane (24%), neohexane (22%), and n-pentane (0%). It appears that molecular geometry has an important role in determining the magnitude of the reorientational contribution to the structure of the glass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we rederive the hierarchy of equations for the evolution of distribution functions of various orders using a convenient parameterization. We use this to obtain equations for two- and three-point correlation functions in powers of a small parameter, viz., the initial density contrast. The correspondence of the lowest order solutions of these equations to the results from the linear theory of density perturbations is shown for an OMEGA = 1 universe. These equations are then used to calculate, to the lowest order, the induced three-point correlation function that arises from Gaussian initial conditions in an OMEGA = 1 universe. We obtain an expression which explicitly exhibits the spatial structure of the induced three-point correlation function. It is seen that the spatial structure of this quantity is independent of the value of OMEGA. We also calculate the triplet momentum. We find that the induced three-point correlation function does not have the ''hierarchical'' form often assumed. We discuss possibilities of using the induced three-point correlation to interpret observational data. The formalism developed here can also be used to test a validity of different schemes to close the

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics calculations on xenon adsorbed in the cubic cavity of cloverite, a gallophosphate, is presented. Guest-host radial distribution functions, guest-host energy distribution functions, power spectra, and diffusion coefficients for xenon are reported at 397, 494, and 716 K. Results suggest that xenon is highly mobile at 700 K. A shift in the peak position of the power spectra toward lower frequency is observed with increase in temperature. (C) 1994 Academic Press, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A molecular dynamics calculation of argon in NaCaA zeolite at 393 K and 1 atom per cage is reported. Equilibrium properties such as guest-host interaction energy, guest-guest dimerization and bonding energy, various guest-host and guest-guest radial distribution functions and dynamical properties such as the mean-square displacement, power spectra and diffusion coefficient have been obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stationary velocity distribution functions are determined for a particle in a gravitational field driven by a vibrating surface in the limit of small dissipation. It is found that the form of the distribution function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag, and also to the form of the amplitude function of the vibrating surface. The velocity distributions obtained analytically are found to be in excellent agreement with the results of computer simulations in the limit of low dissipation. [S0031-9007(99)08898-5].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fluctuating-force model is developed for representing the effect of the turbulent fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in the limit of high Stokes number, where the particle relaxation time is large compared with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating force is incorporated in the equation of motion for the particles, and the force distribution is assumed to be an anisotropic Gaussian white noise. It is shown that this is equivalent to incorporating a diffusion term in the Boltzmann equation for the particle velocity distribution functions. The variance of the force distribution, or equivalently the diffusion coefficient in the Boltzmann equation, is related to the time correlation functions for the fluid velocity fluctuations. The fluctuating-force model is applied to the specific case of a Couette flow of a turbulent particle–gas suspension, for which both the fluid and particle velocity distributions were evaluated using direct numerical simulations by Goswami & Kumaran (2010). It is found that the fluctuating-force simulation is able to quantitatively predict the concentration, mean velocity profiles and the mean square velocities, both at relatively low volume fractions, where the viscous relaxation time is small compared with the time between collisions, and at higher volume fractions, where the time between collisions is small compared with the viscous relaxation time. The simulations are also able to predict the velocity distributions in the centre of the Couette, even in cases in which the velocity distribution is very different from a Gaussian distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The numerical solutions of Boltzmann transpott equation for the energy distribution of electrons moving in crossed fields in nitrogen have been obtained for 100 ÿ E/p ÿ 1000 V M-1 Torr-1 and for 0ÿ B/p ÿ 0.02 Tesla Torr-1 using the concept of energy dependent effective field intensity. From the derived distribution functions the electron mean energy, the tranaverse and perpendicular drift velocities and the averaged effective field intensity (Eavef) which signifies the average field intensity experienced by electron swarms in E àB field have been derived. The maximum difference between the electron mean energy for a given E ÃÂB field and that corresponding to Eavef/p (p is the gas pressure) is found to be within ñ3.5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]