180 resultados para Dirichlet boundary conditions
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient. (c) 2015 AIP Publishing LLC.
Resumo:
When spatial boundaries are inserted, supersymmetry (SUSY) can be broken. We have shown that in an N = 2 supersymmetric theory, all local boundary conditions allowed by self-adjointness of the Hamiltonian break N = 2 SUSY, while only a few of these boundary conditions preserve N = 1 SUSY. We have also shown that for a subset of the boundary conditions compatible with N = 1 SUSY, there exist fermionic ground states which are localized near the boundary. We also show that only very few nonlocal boundary conditions like periodic boundary conditions preserve full N = 2 supersymmetry, but none of them exhibits edge states.
Resumo:
We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.
Resumo:
In Incompressible Smooth Particle Hydrodynamics (ISPH), a pressure Poisson equation (PPE) is solved to obtain a divergence free velocity field. When free surfaces are simulated using this method a Dirichlet boundary condition for pressure at the free surface has to be applied. In existing ISPH methods this is achieved by identifying free surface particles using heuristically chosen threshold of a parameter such as kernel sum, density or divergence of the position, and explicitly setting their pressure values. This often leads to clumping of particles near the free surface and spraying off of surface particles during splashes. Moreover, surface pressure gradients in flows where surface tension is important are not captured well using this approach. We propose a more accurate semi-analytical approach to impose Dirichlet boundary conditions on the free surface. We show the efficacy of the proposed algorithm by using test cases of elongation of a droplet and dam break. We perform two dimensional simulations of water entry and validate the proposed algorithm with experimental results. Further, a three dimensional simulation of droplet splash is shown to compare well with the Volume-of-Fluid simulations. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Static and vibration problems of an indeterminate continuum are traditionally analyzed by the stiffness method. The force method is more or less non-existent for such problems. This situation is primarily due to the incomplete state of development of the compatibility conditions which are essential for the analysis of indeterminate structures by the flexibility method. The understanding of the Compatibility Conditions (CC) has been substantially augmented. Based on the understanding of CC, a novel formulation termed the Integrated Force Method (IFM) has been established. In this paper IFM has been extended for the static and vibration analyses of a continuum. The IFM analysis is illustrated taking three examples: 1. (1) rectangular plate in flexure 2. (2) analysis of a cantilevered dam 3. (3) free vibration analysis of a beam. From the examples solved it is observed that the force response of an indeterminate continuum with mixed boundary conditions can be generated by IFM without any reference to displacements in the field or on the boundary. Displacements if required can be calculated by back substitution.
Resumo:
We propose an analytic perturbative scheme in the spirit of Lord Rayleigh's work for determining the eigenvalues of the Helmholtz equation in three dimensions inside an arbitrary boundary where the eigenfunction satisfies either the Dirichlet boundary condition or the Neumann boundary condition. Although numerous works are available in the literature for arbitrary boundaries in two dimensions, to the best of our knowledge the formulation in three dimensions is proposed for the first time. In this novel prescription, we have expanded the arbitrary boundary in terms of spherical harmonics about an equivalent sphere and obtained perturbative closed-form solutions at each order for the problem in terms of corrections to the equivalent spherical boundary for both the boundary conditions. This formulation is in parallel with the standard time-independent Rayleigh-Schrodinger perturbation theory. The efficacy of the method is tested by comparing the perturbative values against the numerically calculated eigenvalues for spheroidal, superegg and superquadric shaped boundaries. It is shown that this perturbation works quite well even for wide departure from spherical shape and for higher excited states too. We believe this formulation would find applications in the field of quantum dots and acoustical cavities.
Resumo:
A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.
Resumo:
An analytical solution of the heat transfer problem with viscous dissipation for non-Newtonian fluids with power-law model in the thermal entrance region of a circular pipe and two parallel plates under constant heat flux conditions is obtained using eigenvalue approach by suitably replacing one of the boundary conditions by total energy balance equation. Analytical expressions for the wall and the bulk temperatures and the local Nusselt number are presented. The results are in close agreement with those obtained by implicit finite-difference scheme. It is found that the role of viscous dissipation on heat transfer is completely different for heating and cooling conditions at the wall. The results for the case of cooling at the wall are of interest in the design of the oil pipe line.
Resumo:
It is well known that the numerical accuracy of a series solution to a boundary-value problem by the direct method depends on the technique of approximate satisfaction of the boundary conditions and on the stage of truncation of the series. On the other hand, it does not appear to be generally recognized that, when the boundary conditions can be described in alternative equivalent forms, the convergence of the solution is significantly affected by the actual form in which they are stated. The importance of the last aspect is studied for three different techniques of computing the deflections of simply supported regular polygonal plates under uniform pressure. It is also shown that it is sometimes possible to modify the technique of analysis to make the accuracy independent of the description of the boundary conditions.
Resumo:
Short-time analytical solutions of solid and liquid temperatures and freezing front have been obtained for the outward radially symmetric spherical solidification of a superheated melt. Although results are presented here only for time dependent boundary flux, the method of solution can be used for other kinds of boundary conditions also. Later, the analytical solution has been compared with the numerical solution obtained with the help of a finite difference numerical scheme in which the grid points change with the freezing front position. An efficient method of execution of the numerical scheme has been discussed in details. Graphs have been drawn for the total solidification times and temperature distributions in the solid.
Resumo:
The analysis of steady laminar forced convection boundary layer of power-law non-Newtonian fluids on a continuously moving cylinder with the surface maintained at a uniform temperature or uniform heat flux is presented. Of interest were the effects of power-law viscosity index, transverse curvature, generalized Prandtl number and streamwise coordinate on the local Nusselt number as well as on the velocity and temperature profiles. The two thermal boundary conditions yield quite similar results. Comparison of the calculated results with available series expansion solutions for a Newtonian fluid shows a very good performance of the present numerical procedure.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.