38 resultados para Dimensión fractal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patches with variants of fractal Minkowski curves as boundaries are used here to design a polarization dependent electromagnetic bandgap surface. Reflection phases of the proposed structure depends upon the polarization state of the incident wave and frequency. The phase difference between the x-polarized and y-polarized components of the reflected wave can be as high as 200 degrees and this is achieved without excessive increase in unit cell dimensions and vias. The performance of the surface is analyzed numerically using CST microwave studio. The potential applications of the surface are in polarization conversion surfaces, polarimetric radar calibration, and RCS reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new delaminated composite beam element is formulated for Timoshenko as well as Euler-Bernoulli beam models. Shape functions are derived from Timoshenko functions; this provides a unified formulation for slender to moderately deep beam analyses. The element is simple and easy to implement, results are on par with those from free mode delamination models. Katz fractal dimension method is applied on the mode shapes obtained from finite element models, to detect the delamination in the beam. The effect of finite element size on fractal dimension method of delamination detection is quantified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melancholic depressive patients referred for ECT were randomized to receive either low dose (n = 20) or high dose (n = 20) stimulus applied bifrontotemporally. The two stimulus groups were comparable on the clinical variables. The EEG seizure was recorded on two channels (right and left frontal), digitized, coded and analyzed offline without knowledge of ECT parameters. EEG seizure was of comparable duration in the two stimulus (high dose and low dose) groups. A new composite measure, Strength-Symmetry-Index (SSI), based on strength and symmetry of seizure EEG was computed using fractal geometry. The SSI of the early-seizure was higher in the high dose than in the low dose ECT group. In a stepwise, logistic regression model, this variable contributed to 65% with correct classification of high dose and low dose ECT seizures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assuming the grinding wheel surface to be fractal in nature, the maximum envelope profile of the wheel and contact deflections are estimated over a range of length scales. This gives an estimate of the 'no wear' roughness of a surface ground metal. Four test materials, aluminum, copper, titanium, and steel are surface ground and their surface power spectra were estimated. The departure of this power spectra from the 'no wear' estimates is studied in terms of the traction-induced wear damage of the surfaces. The surface power spectra in grinding are influenced by hardness and the power is enhanced by wear damage. No such correlation with hardness was found for the polished surface, the roughness of which is insensitive to mechanical properties and appears to be influenced by microstructure and physical properties of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractal Minkowski curves to design a compact dual-frequency microstrip ring antenna are proposed. Sides of a square ring have been selectively replaced with first and second iterations of the generalised fractal geometry to design a smaller antenna with dual-frequency operation. This behaviour has been explained based on current distributions on the antenna structure. Measured results compare well with electromagnetic simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of an in situ small-angle x-ray scattering (SAXS) study of the aggregation of gold nanoparticles formed by an interfacial reaction at the toluene-water interface. The SAXS data provide a direct evidence for aggregate formation of nanoparticles having 1.3 nm gold core and an organic shell that gives a core-core separation of about 2.5 nm. Furthermore, the nanoparticles do not occupy all the cites of 13-member cluster. This occupancy decreases with reaction time and indicate reorganization of the clusters that generates planner disklike structures. A gradual increase in fractal dimension from 1.82 to 2.05 also indicate compactification of cluster aggregation with reaction time, the final exponent being close to 2 expected for disklike aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This combination is rather subtle for models that order in two dimensions but have no true order in one dimension, as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant examples are the O(2) quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions of the O(2) quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of spin-wave theory. A real-space renormalization group (RSRG) approach is then used to understand how these rare points modify ordering of the O(2) rotor. A new class of fixed points of the RSRG equations for disordered one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and superconducting arrays, and also (qualitatively) for the diluted Heisenberg antiferromagnet La-2(Zn,Mg)(x)Cu1-xO4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report Raman scattering from the boehmite, gamma-, delta- and alpha-phases of the alumina gel. Samples are characterized by transmission and scanning electron microscopy, X-ray diffraction and density measurements. The main Raman line in the boehmite phase is red-shifted as well as asymmetrically broadened with respect to that in the crystalline boehmite, signifying the nanocrystalline nature of the gel. Raman signatures are absent in the gamma- and delta-phases due to the disorder in cation vacancies. We also show that low frequency Raman scattering from the boehmite phase resembles that from a fractal network, characterized in terms of fraction dimension ($) over tilde d. Taking Hausdorff dimension D of the boehmite gel to be 2.5 (or 3.0), the value of ($) over tilde d is 1.33 +/- 0.02 (or 1.44 +/- 0.02), which is close to the theoretically predicted value of 4/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monotonic decrease in viscosity with increasing shear stress is a known rheological response to shear flow in complex fluids in general and for flocculated suspensions in particular. Here we demonstrate a discontinuous shear-thickening transition on varying shear stress where the viscosity jumps sharply by four to six orders of magnitude in flocculated suspensions of multiwalled carbon nanotubes (MWNT) at very low weight fractions (approximately 0.5%). Rheooptical observations reveal the shear-thickened state as a percolated structure of MWNT flocs spanning the system size. We present a dynamic phase diagram of the non-Brownian MWNT dispersions revealing a starting jammed state followed by shear-thinning and shear-thickened states. The present study further suggests that the shear-thickened state obtained as a function of shear stress is likely to be a generic feature of fractal clusters under flow, albeit under confinement. An understanding of the shear-thickening phenomena in confined geometries is pertinent for flow-controlled fabrication techniques in enhancing the mechanical strength and transport properties of thin films and wires of nanostructured composites as well as in lubrication issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.