336 resultados para Diffusion-edited H-1 Nmr


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion of pentane isomers in zeolites NaX has been investigated using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and molecular dynamics (MD) techniques respectively. Temperature and concentration dependence of diffusivities have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of Karger and Pfeifer 1]. NMR diffusivities of the isomers exhibit the order D(n-pentane) > D(isopentane) > D(neopentane). The results from MD suggest that the diffusivities of the isomers follow the order D(n-pentane) < D(isopentane) < D(neopentane). The activation energies from NMR show E-a(n-pentane) < E-a(isopentane) < E-a(neopentane) whereas those from MD suggest the order E-a(n-pentane) > (isopentane) > E-a(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between diffusivities estimated by NMR and MD are attributed to the longer time and length scales sampled by the NMR technique, as compared to MD. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most often the measurement of VHF from the conventional 1D H-1 NMR spectrum is severely hindered consequent to similar magnitudes of JHF and JHH couplings and the spectral multiplicity pattern. The present study reports a new 1D NMR technique based on real time spin edition, which removes all JHF and JHH while retaining only VHF of a chosen fluorine. The obtained spectrum is significantly simplified and permits straightforward determination of all possible VHF values of a chosen fluorine. Due to one dimensional nature, the method is much faster compared to 2D GET-SERF by 1-2 orders of magnitude. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The H-1 NMR spectra of N-(2-pyridyl), N'-(3-pyridyl)ureas and N-(2-pyridyl), N'-(4-pyridyl)ureas in CDCl3 and (CD3)(2)CO have been assigned with the aid of COSY and NOE experiments and chemical shift and coupling constant correlations, The C-13 NMR spectra in CDCl3 were analysed utilizing the HETCOR and proton coupled spectra, The H-1 NMR spectra, NOE effects and MINDO/3 calculations have been utilized to show that the molecular conformation of these compounds has the 2-pyridyl ring coplanar with the urea plane with the N-H group hydrogen bonded to the nitrogen of the 2-pyridyl group on the other urea nitrogen while the 3/4-pyridyl group rotates rapidly about the N-C-3/N-C-4 bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMR study of ferrous fluosilicate hexahydrate indicated the presence of motion of both proton and fluorine nuclei. Only a single narrow line was observed for protons for any arbitrary orientation of a single crystal with respect to the applied magnetic field. This can be interpreted in terms of a phase-correlated flip motion of the interproton vectors between two disordered orientations or in terms of a hindered rotation of the Fe(H2O) 6 octahedron about the fourfold axes, together with the flip motion. The fluorine second moment indicated that the SiF6 octahedron also is undergoing reorientation. The temperature variation of the powder linewidth showed a transition around 195°K and led to rather low values for the potential barriers hindering the motions. No significant temperature variation of the linewidth was observed for hexahydrated cobalt fluosilicate in the temperature range between 90°K and room temperature. Similar observations in a powder sample of tetrahydrated copper fluosilicate also showed the presence of internal motions. The linewidth transition in this case took place at about 220°K and was found to be rather abrupt. The potential barrier for the motion was found to be relatively high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deuteron NMR studies of mixtures of nematic liquid crystals such as N-(p-ethoxybenzylidene)-p-n-butylaniline and trans-4-pentyl-4-(4-cyanophenyl)cyclohexane and the molecules dissolved therein show the coexistence of up to three different spectra at certain concentrations and temperatures. This is attributed to the coexistence of nematic and “induced” smectic phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wide-line c.w. proton resonance investigations have been carried out on the ammonium halides, namely, ammonium chloride, ammonium bromide and ammonium iodide in the temperature range between 77 and 300 K and in the pressure range between 1 bar and 14 kbar. It has been found that the narrow iodide spectrum at 77 K broadens under the application of hydrostatic pressure. The barrier height for the ammonium ion motion in ammonium iodide under pressure has been estimated by carrying out a temperature variation study. The rotational potential for the motion of ammonium ion in ammonium iodide at 1 bar and 14 kbar has been calculated using earlier theoretical models and compared with values calculated for ammonium chloride and bromide. The barrier height in the case of ammonium iodide under pressure is found to be of the same order of magnitude as the value obtained in the case of ammonium bromide at atmospheric pressure indicating that the high pressure phase of ammonium iodide is likely to have the same structure as the low temperature ordered CsCl phase found in the case of the chloride and the bromide. The increase in the potential barrier height in the case of ammonium iodide under pressure indicates that the reorientational motion executed by the ammonium ions is inhibited by the application of pressure. This is also confirmed by the broadening of the spectral line at 77 K under the application of pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using F-19 and H-1-NMR (with N-14 decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-H center dot center dot center dot F)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate H-1 assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four isomeric dialdehydes 4, readily available from cycloaddition of propiolic aldehyde (2) to 1,2,4,5-hexatetraene (1), were separated by chromatography and recrystallization, and were characterized by their spectroscopic data. The individual isomers can now be easily identified from their H-1 NMR spectra even if only one of them is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

29Si chemical shifts in a wide variety of silicates in crystalline, glassy and gel states have been related to a parameter, P, which takes into account the electronegativity and the structural description of the silicate units as well as the ionic potential of the modifier cation. The relation, δ(ppm)=28.4 [1−exp(−P)]−110.5, besides having predictive value, satisfactorily accounts for all the available chemical-shifts data on silicates and shows the right kind of limiting behaviour, with δ approaching the Q0 value at large P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proton second moment M2 and spin-lattice relaxation time T1 have been measured in ammonium tribromo stannate (NH4SnBr3) in the temperature range 77–300 K, to determine the ammonium dynamics. The continuous wave signal is strong and narrow at 77 and 300 K but has revealed an interesting intensity anomaly between 210 and 125 K. T1 shows a maximum (13 s) around 220 K. No minimum in the T1 vs 1000/T plot was observed down to 77 K. M2 and T1 results are interpreted in terms of NH+4 ion dynamics. The activation energy Ea for NH+4 ion reorientation is estimated to be 1.4 kcal mol−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films of (PEG)(x)NH4ClO4 (x = 5 to 1000) were prepared and characterized. The physical properties are observed to be a sensitive function of concentration. Hygroscopicity increases as salt content increases. Conductivity peaks (sigma = 2.7 x 10(-6) S/cm) at x = 46. The H-1 NMR line width has a minimum at x = 46, while that of Cl-35 monotonically increases with salt concentration, indicating that the complex is essentially a protonic conductor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H-1 NMR spectra of N-(4-methylphenyl)-2-pyridinecarboxamide and N-(4-methyl-phenyl)-3-pyridine carboxamide in CDCl3 and (CD3)(2)CO have been analysed with the help of the COSY spectra. Accurate H-1 chemical shifts and coupling constants have been obtained from the simulated spectra. From H-1 NMR and Nuclear Overhauser Enhancement (NOE) measurements the molecular conformations are inferred. The pyridyl ring is apparently coplanar with the amide group while the 3-pyridyl ring is nearly perpendicular to the amide plane so that the amide proton is nearer to the 2-pyridyl proton H2 than to H4. The orientation of the 4-methylphenyl group could not be determined.