70 resultados para Diamond nanoparticle
Resumo:
The formation of nanoscale liquid droplets by friction of a solid is observed in real-time. This is achieved using a newly developed in situ transmission electron microscope (TEM) triboprobe capable of applying multiple reciprocating wear cycles to a nanoscale surface. Dynamical imaging of the nanoscale cyclic rubbing of a focused-ion-beam (FIB) processed Al alloy by diamond shows that the generation of nanoscale wear particles is followed by a phase separation to form liquid Ga nanodroplets and liquid bridges. The transformation of a two-body system to a four-body solid-liquid system within the reciprocating wear track significantly alters the local dynamical friction and wear processes. Moving liquid bridges are observed in situ to play a key role at the sliding nanocontact, interacting strongly with the highly mobile nanoparticle debris. In situ imaging demonstrates that both static and moving liquid droplets exhibit asymmetric menisci due to nanoscale surface roughness. Nanodroplet kinetics are furthermore dependent on local frictional temperature, with solid-like surface nanofilaments forming on cooling. TEM nanotribology opens up new avenues for the real-time quantification of cyclic friction, wear and dynamic solid-liquid nanomechanics, which will have widespread applications in many areas of nanoscience and nanotechnology.
Resumo:
We present a simple template-free method for the synthesis of interconnected hierarchical porous palladium nanostructures by controlling the aggregation of nanoparticles in organic media. The interaction between the nanoparticles is tuned by varying the dielectric constant of the medium consistent with DLVO calculations. The reaction products range from discrete nanoparticles to compact porous clusters with large specific surface areas. The nanoclusters exhibit hierarchical porosity and are found to exhibit excellent activity towards the reduction of 4-nitrophenol into 4-aminophenol and hydrogen oxidation. The method opens up possibilities for synthesizing porous clusters of other functional inorganics in organic media.
Resumo:
Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.
Resumo:
Isoactivity lines for carbon with respect to diamond as the standard state have been calculated in the ternary system C-H-O at 1223 K to identify the diamond deposition domain. The gas composition is calculated by suppressing the formation of all condensed forms of carbon using the SOLGASMIX free-energy minimization program. Thirty six gas species were included in the calculation. From the gas composition, isoactivity lines are computed using recent data on the Gibbs energy of diamond. Except for activities less than 0.1, the isoactivity lines are almost linear on the C-H-O ternary diagram. Gas compositions which generate activity of diamond ranging from 1 to 100 at 1223 K fall inside a narrow wedge originating from the point representing CO. This wedge is very similar to the revised lens-shaped diamond growth domain identified by Bachman et al., using inputs from experiment. The small difference between the calculated and observed domains may be attributed to variation in the supersaturation required for diamond deposition with gas composition. The diamond solubility in the gas phase along the isoactivity line for a(di)=100 and P=6.7 kPa exhibits a minimum at 1280 K, which is close to the optimum temperature found experimentally. At higher supersaturations, non-diamond forms of carbon, including amorphous varieties, are expected. The results suggest that thermodynamic calculations can be useful for locating diamond growth domains in more complex CVD systems containing halogens, for which very little experimental data is available.
Resumo:
The HOMO-LUMO gaps have been estimated in a graphite-like sp(2) carbon network with a progressive increase in the fraction of sp(3) carbons, taking into account several possible structural alternatives for each composition. The gap is shown to increase exponentially with the fraction of sp(3) carbons. Accordingly, the gap in a diamond-like sp(3) network decreases with the increase in the fraction of sp(2) carbons.
Resumo:
An optical microscopy study of stress relief patterns in diamond-like carbon films is presented. Interesting stress relief patterns are observed which include the well-known sinusoidal type, branching pattern and string-of-beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on the film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.
Resumo:
he chemical potential of carbon in diamond, relative to its value in graphite, has been directly determined using a solid state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The cell can be represented as Pt, C(graphite) + CaC2 + CaF2double vertical barCaF2double vertical barCaF2 + CaC2 + C(diamond), Pt The reversible emf of this cell is directly related by the Nernst equation to the Gibbs free energy change for the conversion of diamond to graphite. The difference in the chemical potential of carbon in the two crystal structures varies linearly with temperature in the range 940 to 1260 K ?C(diamond) ? ?C(graphite) = 1100 + 4.64T (±50) J mol?1 On the average, the values given by the equation are 320 J mol?1 less positive than the currently accepted ones based on calorimetric studies. The difference is primarily in the enthalpy term.
Resumo:
Diamond like carbon films deposited by RF magnetron sputter deposition technique contain both SP2 and SP3 hybridized carbons. These films are structurally disordered and inhomogeneous. By the application of electric field across the film, these films are transformed to a more orderly structured diamond like carbon, bringing homogenity in the film. This transformation has resulted in the increase of the reflectivity of the metal(Aluminum), which is used as one of the electrodes for applying the electric field, by 5 times.
Resumo:
In this paper, recent results on band A emission in chemical vapor-deposited diamond films have been analyzed within a vibronic model. The blue-band A (2.8 eV) spectra from undoped diamond films grown by two different techniques have been simulated using the same phonon density distribution g(Omega) and Huang-Rhys factor (S). The same g(Omega) at higher S gives a good fit with the green band A (2.32 eV) as well. This model provides a reasonable alternative approach to the long standing donor-acceptor pair recombination model.
Resumo:
Nanoparticles thin films have wide range of applications such as nanoelectronics, magnetic storage devices, SERS substrate fabrication, optical grating and antireflective coating. Present work describes a method to prepare large area nanoparticles thin film of the order of few square centimeters. Thin film deposition has been done successfully on a wide range of conducting as well as non conducting substrates such as carbon-coated copper grid, silicon, m-plane of alumina, glass and (100) plane of NaCl single crystal. SEM, TEM and AFM studies have been done for microstructural characterization of the thin films. A basic mechanism has been proposed towards the understanding of the deposition process.
Resumo:
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T(g). In these thin films we find a significant dependence of T(g) on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.
Resumo:
We report the formation of Ag-Fe nanoparticles with an ultrafine scale phase separated microstructure consisting of Ag and Fe(3)O(4) phases. Ag-Fe particles were synthesised by the co-reduction of Ag and Fe salts in water medium. The co-existing Ag and Fe(3)O(4) phase volumes were around similar to 1 nm in one of the dimensions. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.